Turbulence induced particle fragmentation and coalescence


Turbulent Kinetic Energy Dissipation Rate Turbulent Eddy Bubble Coalescence Turbulent Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bello JK (1968) Turbulent flow in channel with parallel walls, Moskva, Mir, in RussianGoogle Scholar
  2. 2.
    Bhavaraju SM, Russel TWF, Blanch HW (1978) The design of gas sparged devices for viscous liquids systems, AIChE J., vol 24 p 3Google Scholar
  3. 3.
    Calderbank PH (October 1967) Gas absorption from bubbles, The Chemical Engineer CE209-CE233Google Scholar
  4. 4.
    Clay PH (1940) Proceedings of the Royal Academy of Science (Amsterdam), Vol. 43 p 852Google Scholar
  5. 5.
    Coulaloglu CA, Tavlarides LL (1977) Description of Interaction Processes in Agitated Liquid-Liquid Dispersion, Chem. Eng. Sci., vol 32 p 1289CrossRefGoogle Scholar
  6. 6.
    Hibiki T, Ishii M (August 15–17, 1999) Interfacial area transport of air-water bubbly flow in vertical round tubes, CD proc. of the 33rd Nat. Heat Transfer Conf., Albuquerque, New MexicoGoogle Scholar
  7. 7.
    Hinze JO (1955) Fundamentals of hydrodynamics of splitting in dispersion processes, AIChE Journal, vol 1 pp 284–295CrossRefGoogle Scholar
  8. 8.
    Jeffreys GV, Hawksley L (1965) Coalescence of liquid droplets in two-component-two-phase systems, Amer. Inst. Chem. Engs. J., vol 11 p 413Google Scholar
  9. 9.
    Kim WK, Lee KL (1987) Coalescence behavior of two bubbles in stagnant liquid, J. Chem. Eng. Japan, vol 20 pp 449–453Google Scholar
  10. 10.
    Kirkpartick RD, Lockett MJ (1974) The influence of the aproach velocity on bubble coalescence, Chem. Eng. Sci., vol 29 pp 2363–2373CrossRefGoogle Scholar
  11. 11.
    Kocamustafaogullari G, Huang W D, Razi J (1994) Measurements and modelling of average void fraction, bubble size and interfacial area, Nucl. Eng. Des., vol 148 p 437CrossRefGoogle Scholar
  12. 12.
    Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and ist closure relations, Int. J. Heat Mass Transfer, vol 38 no 3 pp 481–493CrossRefGoogle Scholar
  13. 13.
    Kolmogoroff AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. U.S.S.R., vol 30 pp 825–828Google Scholar
  14. 14.
    Kolmogoroff AN (1949) On the disintegration of drops in turbulent flow, Doklady Akad. Nauk. U.S.S.R., vol 66 p 825Google Scholar
  15. 15.
    Lamb MA (1945) Hydrodynamics. Cambridge, At the University PressGoogle Scholar
  16. 16.
    Levich VG (1962) Physicochemical hydrodynamics, Prentice-Hall, Inc. Englewood Cliffs, N.J.Google Scholar
  17. 17.
    Meusel W (1980) Einfluß der Partikelkoaleszenz auf den Stoffübergang in turbulenten Gas-flüssig-Systemen, Ph. D. Thesis, Ingenieurhochschule KöthenGoogle Scholar
  18. 18.
    Meusel W (1989) Beitrag zur Modellierung von Gas-Flüssigkeits-Reaktoren auf der Basis relevanter Mikroprozesse, Doctoral Thesis, Ingenieurhochschule KöthenGoogle Scholar
  19. 19.
    Meusel W (1989) Beitrag zur Modellierung von Gas-Flüssigkeits-Reaktoren auf der Basis relevanter Mikroprozesse, Doctoral Thesis, Ingenieurhochschule KöthenGoogle Scholar
  20. 20.
    Pfeifer W, Schmidt H (April 1978) Literaturübersicht zu den fluiddynamischen Problemen bei der Auslegung gepulster Siebböden Kolonnen, Kernforschungszentrum Karlsruhe, KfK 2560Google Scholar
  21. 21.
    Oolman T, Blanch HW (1986) Bubble coalescence in air-sparged bioreactors, Biotech. Bioeng., vol 28 pp 578–584CrossRefGoogle Scholar
  22. 22.
    Oolman T, Blanch HW (1986) Bubble coalescence in stagnant liquids, Chem. Eng. Commun., vol 43 pp 237–261Google Scholar
  23. 23.
    Reichardt H (Mai/Juni 1942) Gesetzmäßigkeiten der freien Turbulenz, VDI-Forschungsh. Nr. 414, Beilage zu “Forschung auf dem Gebiet des Ingenieurwesens”, Ausgabe B, Band 13Google Scholar
  24. 24.
    Rosenzweig AK, Tronov VP, Perguschev LP (1980) Coaliszencija Kapel Vody v Melkodispersnyh Emulsijach Tipa Voda v Nevti, Journal Pricladnoj Chimii, no 8 pp 1776–1780Google Scholar
  25. 25.
    Schelle GF, Leng DE (1971) An experimental study of factors which promote coalescence of two colliding drops suspended in Water-I, Chemical Engineering Science, vol 26 pp 1867–1879CrossRefGoogle Scholar
  26. 26.
    Sevik M, Park SH (1973) The splitting of drops and bubbles by turbulent fluid flow, Trans. ASME J. Fluid Engs., vol 95 p 53Google Scholar
  27. 27.
    Smoluchowski M (1918) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift flür Physikalische Chemie, Leipzig Band XCII pp 129–168Google Scholar
  28. 28.
    Taylor GI (1935) Proc. Roy. Soc. A, vol 151 p 429. See also (1950) The instability of liquid surface when accelerated in a direction perpendicular to their plane, Proc. Roy. Soc. A, vol 201 pp 192–196Google Scholar
  29. 29.
    Thomas RM (1981) Bubble coalescence in turbulent flows, Int. J. Multiphase Flow, vol 6 no 6 pp 709–717CrossRefGoogle Scholar
  30. 30.
    Yaglom AM (1949) Doclady AN SSSR, vol 67 no 5Google Scholar
  31. 31.
    Paranjape SS et al (5–9 October 2003) Interfacial structure and area transport in upward and downward two-phase flow, 10th Int. Top. Meeting on Nuclear Reactor Thermal Hydraulic (NURETH-10) Seul, KoreaGoogle Scholar
  32. 32.
    Morel C, Yao W and Bestion D (5–9 October 2003) Three dimensional modeling of boiling flow for NEPTUNE code, 10th Int. Top. Meeting on Nuclear Reactor Thermal Hydraulic (NURETH-10) Seul, KoreaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations