Acceleration induced droplet and bubble fragmentation


Relative Velocity Weber Number Wave Crest Breakup Time Ohnesorge Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson WH and Wolfe HE (1965) Aerodynamic breakup liquid drops-I. Theoretical, Proc. Int. Shock Tube Symposium, Naval Ordinance Lab. White Oak, Maryland, USA, pp 1145–1152Google Scholar
  2. 2.
    Ahmad SY (1970) Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling, J. Heat Transfer, vol 92 pp 595Google Scholar
  3. 3.
    Arcoumanis C, Khezzar L, Whitelaw DS and Warren BCH (1994) Breakup of Newton and non-Newton fluids in air jets, Experiments in Fluids, vol 17 pp 405–414CrossRefGoogle Scholar
  4. 4.
    Ashgriz N and Givi P (1987) Binary collision dynamics of fuel droplets, Int. J. Heat Fluid Flow, vol 8 pp 205–210CrossRefGoogle Scholar
  5. 5.
    Baines M and Buttery NE (Sept. 1978) Differential velocity fragmentation in liquid-liquid systems, RD/B/N4643, Berkley Nuclear LaboratoriesGoogle Scholar
  6. 6.
    Brauer H (1992) Umströmung beschleunigter und verzögerter Partikel, Wärme und Stoffübertragung, vol 27 pp 93–101CrossRefGoogle Scholar
  7. 7.
    Brodkey RS (1967) The phenomena of fluid motions, Addison-Wesley PressGoogle Scholar
  8. 8.
    Chen X, Yuen WW and Theofanous TG (1995) On the constitutive description of micro-interactions concept in steam explosions, Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142Google Scholar
  9. 9.
    Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability, Dover Publ. Inc., New YorkGoogle Scholar
  10. 10.
    Chu CC and Corrardini MC (Nov. 1984) Hydrodynamics fragmentation of liquid droplets, ANS Transaction, Wash. DC, vol 47Google Scholar
  11. 11.
    Chu CC and Corrardini MC (Febr. 2–6, 1986) One-dimensional model for fuel coolant fragmentation and mixing analysis, Proceedings of the International ANS/ENS Topical Meeting on Thermal Reactor Safety, San Diego, California, U.S.A., vol 1 pp II.2-1–II.2-10Google Scholar
  12. 12.
    De Jarlais G, Ishii M and Linehan J (Febr. 1986) Hydrodynamic stability of inverted annular flow in an adiabatic simulation, Transactions of ASME, Journal of Heat Transfer, vol 108 pp 85–92Google Scholar
  13. 13.
    Dinh AT, Dinh TN, Nourgaliev RR and Sehgal BR (19th–21th May 1997) Hydrodynamic fragmentation of melt drop in water, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, JapanGoogle Scholar
  14. 14.
    Faeth GM (April 3–7, 1995) Spray combustion: a review, Proc. of The 2nd International Conference on Multiphase Flow ‘95 Kyoto, JapanGoogle Scholar
  15. 15.
    Fletcher DF and Anderson RP (1990) A review of pressure-induced propagation models of the vapor explosion process, Progress in Nuclear Energy, vol 23 no 2 pp 137–179CrossRefGoogle Scholar
  16. 16.
    Fournier D’Albe EM and Hidayetulla MS (1955) Quartery Journal Royal Meterological Society, Kondon, vol 81 pp 610–613Google Scholar
  17. 17.
    Gelfand BE, Gubin SA, Kogarko SM and Komar SP (1973) Osobennosti Razrushenija Kapel Vijaskoi Zhidkosti v Udamich Volnach (Feature of Voscous Liquid Drop Breakup Behind Shock Wave) Inzenerno Physicheski Journal, vol 25 no 3 pp 467–470Google Scholar
  18. 18.
    Gelfand BE et al (1974) The main models of the drops breakup; Inzenerno Physicheski Journal, vol 27 no 1 pp 120–126Google Scholar
  19. 19.
    Gelfand BE, Gubin SA et al (1975) Breakup of air bubbles in liquid, Dokl. USSR Ac. Sci., vol 220 no 4 pp 802–804Google Scholar
  20. 20.
    Gelfand BE, Gubin SA and Kogarko SM (1976) Various forms of drop fragmentation in shock waves and their spatial characteristics, J. Eng. Phys., vol 27Google Scholar
  21. 21.
    Haas F (November 1964) Stability of droplets suddenly exposed to a high velocity gas steam, A.I.Ch.E. Journal, vol 10 no 6 pp 920–924Google Scholar
  22. 22.
    Hanson AR, Domich EG and Adams HS (August 1963) Shock tube investigation of the breakup of drop by air blasts, Phys. Fluids, vol 6 no 8 pp 1070–1080CrossRefGoogle Scholar
  23. 23.
    Hassler G (1971) Untersuchungen zur Verformung und Auflösung von Wassertropfen durch aerodynamische Kräfte im stationären Luft-und Wasserstrom für Unterschallgeschwindigkeit, Dissertation, Universität KarlsruheGoogle Scholar
  24. 24.
    Hinze JO (1949) Critical speed and sizes of liquids globules, Appl. Sci. Res., vol Al pp 273–288Google Scholar
  25. 25.
    Hinze JO (1949) Forced deformation of viscous liquid globules, Appl. sci. Res., vol Al pp 263–272Google Scholar
  26. 26.
    Hinze JO (1955) Fundamentals of hydrodynamics of splitting in dispersion processes, AIChE Journal, vol 1 pp 284–295CrossRefGoogle Scholar
  27. 27.
    Hsiang LP and Faeth GM (1992) Near-limit drop deformation and secondary breakup, Int. J. Multiphase Flow, vol 18 no 5 pp 635–652CrossRefGoogle Scholar
  28. 28.
    Ishii M (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, ANL-77-47Google Scholar
  29. 29.
    Kalinin AV (May 1970) Derivation of fluid mechanics equations for two phase medium with phase change, Heat Transfer-Sov. Res. Vol 2 no 3Google Scholar
  30. 30.
    Kamke E (1959) Differentialgleichungen, Lösungsmethoden und Lösungen, Bd.I Gewöhnliche Differentialgleichungen. Leipzig: Gees & PortigGoogle Scholar
  31. 31.
    Kolev NI (Sept. (1991) A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics. Kernforschungszentrum Karlsruhe, KfK 4948Google Scholar
  32. 32.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 2: Models for interfacial transport phenomena. Code Validation. Kernforschungszentrum Karlsruhe, KfK 4949Google Scholar
  33. 33.
    Kolev NI (Sept. 1991) IVA3: Computer code for modeling of transient three dimensional three phase flow in complicated geometry, Program documentation: Input description. Kernforschungszentrum Karlsruhe, KfK 4950Google Scholar
  34. 34.
    Komabayasi MT, Gonda T and Isono K (1964) Life time of water drops before breaking in size distribution fragment droplet, J. Met. Soc. Japan, vol 42 no 5 pp 330–340Google Scholar
  35. 35.
    Krzeczkowski S (1980) Measurement of liquid droplet disintegration mechanisms, Int. J. Multiphase Flow, vol 6 pp 227–239CrossRefGoogle Scholar
  36. 36.
    Laftaye G (1943) Sur l’atomatisation d’un jet liquide, C. R. Acad. Sci., Paris 217 p 340Google Scholar
  37. 37.
    Lamb MA (1945) Hydrodynamics. Cambridge, At the University PressGoogle Scholar
  38. 38.
    Lane WR (June 1951) Shatter of drops in streams of air, Ind. Eng. Chem., vol 43 pp 1312–1317CrossRefGoogle Scholar
  39. 39.
    Li MK and Folger HS (1978) Acoustic emulsification, Part 2. Breakup of large primary oil droplets in water medium, J. Fluid Mech., vol 88 no 3 pp 513–528Google Scholar
  40. 40.
    Magarvey RH and Taylor BW (Oct. 1956) Free fall breakup of large drops, Journal of Applied Physics, vol 27 no 10 pp 1129–1135CrossRefGoogle Scholar
  41. 41.
    Patel PD and Theofanous TG (1981) Hydrodynamic fragmentation of drops, J. Fluid Mech., vol 103 pp 307–323Google Scholar
  42. 42.
    Pilch M, Erdman CA and Reynolds AB (Aug. 1981) Acceleration induced fragmentation of liquid drops, Charlottesville, VA: Department of Nucl. Eng., University of Virginia, NUREG/CR-2247Google Scholar
  43. 43.
    Pilch MM and Erdman CA (1987) Use of the breakup time data and velocity history data to predict the maximum size of stable fragments for acceleraton-induced breakup of a liquid drops, Int. J. Multiphase Flow, vol 13 no 6 pp 741–757CrossRefGoogle Scholar
  44. 44.
    Podovisotsky AM and Schreiber AA (1984) Coalescence and break-up of drops in two-phase flows, Int. J. Multiphase Flow, vol 10 pp 195–209CrossRefGoogle Scholar
  45. 45.
    Reineke WG and Waldman GD (Aug. 11–13, 1970) An investigation of water drop disintegration in region behind strong shock waves, Third International Conference on Rain Erosion and Related Phenomena, Hampshire, EnglandGoogle Scholar
  46. 46.
    Reineke WG and Waldman GD (Jan. 20–22, 1975) Shock layer shattering of cloud drops in reentry flight, AIAA Paper 75-152, AIAA 13th Aerospace Sciences Meeting, Pasadena CaliforniaGoogle Scholar
  47. 47.
    Ruft K (1977) Maximale Einzeltropfen bei stationärer Bewegung in einer niedrigviscosen kontinuierlichen Phase, Chemie Ingenieur Technik, vol 49 no 5 pp 418–419CrossRefGoogle Scholar
  48. 48.
    Sarjeant M (4th–6th April 1979) Drop breakup by gas streams, Third European Conference on MIXING, Held at the University of York, England, pp 225–267Google Scholar
  49. 49.
    Schröder RR and Kitner RC (Jan. 1965) Oscillation of drops falling in liquid field, A.I.Ch.E. Journal, vol 11 no 1 pp 5–8Google Scholar
  50. 50.
    Serizawa A and Kataoka I (May 24–30, 1987) Phase distribution in two-phase flow, Proc. ICHMT Int. Sem. Transient Two-Phase Flow, Dubrovnik, Yugoslavia, Invited LectureGoogle Scholar
  51. 51.
    Simpkins PG and Bales EL (1972) Water-drop response to sudden accelerations, J. Fluid Mech., vol 55 pp 629–639Google Scholar
  52. 52.
    Taylor GI (1949) The shape and acceleration of a drop in a high-speed air stream, Min. of Supply Paper AC10647/Phys. C69. See also (1963) &quote;Scientific Papers&quote;, Cambridge University Press, vol 3 pp 457–464Google Scholar
  53. 53.
    Triebnigg H (1929) Der Einblase-und Einspritzvorgang bei Dieselmotoren, ViennaGoogle Scholar
  54. 54.
    Yuen WW, Chen X and Theofanous TG (Sept.21–24, 1992) On the fundamental micro-interactions that support the propagation of steam explosions, Proc. at the Fifth Int. Top. Meeting on Reactor Thermal Hydraulics, Salt Lake City, UT. NURETH-5, vol 11 pp 627–636Google Scholar
  55. 55.
    Yuen WW, Chen X and Theofanous TG (1994) On the fundamental micro-interactions that support the propagation of steam explosions, NED, vol 146 pp 133–146CrossRefGoogle Scholar
  56. 56.
    Young MF (1989) Application of the IFCI integrated fuel-coolant interaction code to FITS-type pouring mode experiments, SAND 89-1962C, Sandia National LaboratoriesGoogle Scholar
  57. 57.
    Wallis GB (1969) One-dimensional two-phase flow, New York: McGraw HillGoogle Scholar
  58. 58.
    Riso F and Fabre J (1998) Oscillation and breakup of bubbles immersed in turbulent field, J. Fluid Mech. vol 372 pp 323–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations