Introduction to fragmentation and coalescence


Multiphase Flow Collision Frequency Bubbly Flow Particle Number Density Dynamic Fragmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antal SP, Ettorre SM, Kunz RF, Podowski MZ (27th–29th September, 2000) Development of a next generation computer code for the prediction of multi-component multiphase flows, Intemet publication of the Proceedings of Trends in Numerical and Physical Modeling for Industrial Multiphase Flows, Course, FranceGoogle Scholar
  2. 2.
    Chen X, Yuen WW, Theofanous TG (1995) On the constitutive description of micro-interactions concept in steam explosions, Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142Google Scholar
  3. 3.
    Coulaloglu CA, Tavlarides LL (1976) Drop size distribution and coalescence frequencies of liquid-liquid dispersions in flow vessels, A. I. Ch. E., vol 22 no 2 pp 289–297Google Scholar
  4. 4.
    Griffith L (1943) A theory of the size distribution of particles in a comminuted system, Canadian J. Research, vol 21 no 6 pp 57–64Google Scholar
  5. 5.
    Hibiki T, Ishii M (August 15–17, 1999) Interfacial area transport of air-water bubbly flow in vertical round tubes, CD proc. of the 33rd Nat. Heat Transfer Conf., Albuquerque, New MexicoGoogle Scholar
  6. 6.
    Howarth W J (1967) Measurement of coalescence frequency in an agitated tank, A. I. Ch. E. J., vol 13 no 5 pp 1007–1013Google Scholar
  7. 7.
    Kataoka I, Ishii M, Mishima K (June 1983) Transaction of the ASME, vol 105 pp 230–238Google Scholar
  8. 8.
    Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, vol 6 pp 211–251CrossRefGoogle Scholar
  9. 9.
    Kolev NI (October 3–8, 1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CaliforniaGoogle Scholar
  10. 10.
    Kolomentzev AI, Dushkin AL (1985) Vlianie teplovoj i dinamiceskoj neravnovesnosty faz na pokasatel adiabatj v dwuchfasnijh sredach, TE 8, pp 53–55Google Scholar
  11. 11.
    Komasawa S et al (February 1968) Behavior of reacting and coalescing dispersed phase in a stirred tank reactor, Journal of Chemical Engineering of Japan, vol 1 no 1 pp 208–211Google Scholar
  12. 12.
    Lo S (27th–29th September, 2000) Application of population balance to CFD modeling of gas-liquid reactors, Internet publication of the Proceedings of Trends in Numerical and Physical Modeling for Industrial Multiphase Flows, Course, France.Google Scholar
  13. 13.
    Loeb LB (1927) The kinetic theory of gases, Dover, New YorkGoogle Scholar
  14. 14.
    Madden AJ (1962) Coalescence frequencies in agitated liquid-liquid systems, A. I. Ch. E. J., vol 8 no 2 pp 233–239.Google Scholar
  15. 15.
    Mugele RA, Evans HD (1951) Droplet size distribution in sprazs, Ing. Eng. Chem., vol 43 pp 1317–1324CrossRefGoogle Scholar
  16. 16.
    Nukiama S, Tanasawa Y (1938) Trans. Soc. Mech. Engrs. (Japan), vol 4 no 14 p 86Google Scholar
  17. 17.
    Pilch M, Erdman CA, Reynolds A B (Aug. 1981) Acceleration induced fragmentation of liquid drops, Charlottesville, VA: Department of Nucl. Eng., University of Virginia, NUREG/CR-2247Google Scholar
  18. 18.
    Rohsenow WM, Choi H (1961) Heat, mass, and momentum transfer, Prentice-Hall, Inc., Engelwood Cliffs, New JerseyGoogle Scholar
  19. 19.
    Rosenzweig AK, Tronov VP, Perguschev LP (1980) Coaliszencija kapel vody v melkodispersnyh emulsijach tipa voda v nevti, Journal Pricladnoj Chimii, no 8 pp 1776–1780Google Scholar
  20. 20.
    Rosin P, Rammler E (1933) Laws governing the fineness of powdered coal, J. Inst. Fuel, vol 7 pp 29–36Google Scholar
  21. 21.
    Sztatecsny K, Stöber K, Moser F (1977) Blasenkoaleszenz und-zerteilung in einem Rührkessel, Chem. Ing. Techn., vol 49 no 2 p 171CrossRefGoogle Scholar
  22. 22.
    Smoluchowski M (1918) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, Leipzig, Band XCII pp 129–168Google Scholar
  23. 23.
    Sauter J (1929) NACA Rept. TM-518Google Scholar
  24. 24.
    Tomiyama A (June 8–12, 1998) Struggle with computational bubble dynamics, Third International Conference on Multiphase Flow, ICMF 98, Lyon, FranceGoogle Scholar
  25. 25.
    Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations