Advertisement

Diffusion velocities for algebraic slip models

Keywords

Drag Coefficient Drift Velocity Void Fraction Slug Flow Bubbly Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendiksen KH (1985) On the motion of long bubbles in vertical tubes, Int. J. Multiphase Flow, vol 11 pp 797–812CrossRefGoogle Scholar
  2. 2.
    Chexal B, Lellouche G, Horowitz J and Healzer J (Oct. 10–13, 1989) A void fraction correlation applications, Proc. of the Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics. Mueller U, Rehme K, Rust K, (eds) G Braun Karlsruhe Karlsruhe, vol 2 pp 996–1002Google Scholar
  3. 3.
    Covier GW and Azis K (1972) The flow of complex mixtures in pipes, Von Nostrand Reinhold, p 469Google Scholar
  4. 4.
    Clark NN and Flemmer RL (1985) Predicting the holdup in two-phase bubble up flow and down flow using the Zuber and Findlay drift flux model, AIChE J., vol 31 no 3 March, pp 500–503CrossRefGoogle Scholar
  5. 5.
    Coddington P and Macian R, (2000) A study of the performance of void fraction correlations used in the context of drift-flux two phase flow models, Internet publication of the Proceedings of Trends in Numerical and Physical Modeling for Industrial Multiphase Flows, 27th–29th September, Corse, FranceGoogle Scholar
  6. 6.
    Deichsel M and Winter ERF (1990) Adiabatic two-phase pipe flow at air-water mixtures under critical flow conditions, Int. J. Multiphase Flow, vol 16 no 3 pp 391–406CrossRefGoogle Scholar
  7. 7.
    Delhaye JM, Giot M, and Riethmueller ML (1981) Thermodynamics of two-phase systems for industrial design and nuclear engineering. Hemisphere Publ. Corp., Mc Graw-Hill Book CompanyGoogle Scholar
  8. 8.
    Dimitresku DT, (1943) Stroemung an einer Luftblase im senkrechten Rohr, Z. angw. Math. Mech., vol 23 no 3 pp 139–149Google Scholar
  9. 9.
    Fraß F and Wiesenberger J (September 1976) Druckverlust und Phasenverteilung eines Dampf/Wasser-Gemisches in horizontaldurchströmten Rohr, BWK, vol 28 no 9Google Scholar
  10. 10.
    Gardner C G (1980) Fractional vapor content of a liquid pool through which vapor is bubbled, Int. Journal of Multiphase Flow, vol 6 pp 399–410CrossRefGoogle Scholar
  11. 11.
    Grieb G (June 1989) New slip correlation of forced convection two-phase flow, Nucl. Energy, vol 28 no 3 pp 155–160Google Scholar
  12. 12.
    Hetstroni G (1982) Handbook of multiphase systems. Hemisphere Publ. Corp., Washington etc., McGraw-Hill Book Company, New York etc.Google Scholar
  13. 13.
    Holmes JA (13–15 Sept. 1981) Description of the drift flux model in the LOCA-Code RELAP-UK. Heat and Fluid Flow in Water Reactor Safety. ManchesterGoogle Scholar
  14. 14.
    Hug R and Loth J (Jan.–March 1992) Analytical two phase flow void prediction method, J. Thermophysics, vol 6 no 1 pp 139–144Google Scholar
  15. 15.
    Ishii M (1977) One dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL-77-47 Argone National Laboratory, ArgoneGoogle Scholar
  16. 16.
    Ishii M and Mishima K (Dec. 1980) Study of two-fluid model and interfacial area. NUREG/CR-1873, ANL-80-111Google Scholar
  17. 17.
    Lellouche GS (1974) A model for predicting two-phase flow, BNL-18625Google Scholar
  18. 18.
    Liao LH, Parlos A and Grifith P (1985) Heat transfer, carryover and fall back in PWR steam generators during transients, NUREG/CR-4376, EPRI NP-4298Google Scholar
  19. 19.
    Kataoka I and Ishii M (July 1982) Mechanism and correlation of droplet entrainment and deposition in annular two-phase Flow. NUREG/CR-2885, ANL-82-44Google Scholar
  20. 20.
    Kataoka I and Ishii M (1987) Drift flux model for large diameter pipe and new correlation for pool void fraction, Int. J. Heat and Mass Transfer, vol 30 no 9 pp 1927–1939CrossRefGoogle Scholar
  21. 21.
    Kawanishi K, Hirao Y and Tsuge A (1990) An Experimental Study on Drift Flux Parameters for Two-Phase Flow in Vertical Round Tubes, NED, vol 120 pp 447–458CrossRefGoogle Scholar
  22. 22.
    Kolev NI (1982) Modeling of transient non equilibrium, non homogeneous systems, Proc. of the seminar &quote;Thermal Physics 82 (Thermal Safety of VVER Type Nuclear Reactors)&quote;, Karlovy Vary, May 1982, Chechoslovakia, vol 2 pp 129–147 (in Russian).Google Scholar
  23. 23.
    Maier D and Coddington P (1986) Validation of RETRAN-03 against a wide range of rod bundle void fraction data, ANS Transactions, vol 75 pp 372–374Google Scholar
  24. 24.
    Michaelidies E and Parikh S (1982) The prediction of critical mass flux by the use of Fanno lines, Nucl. Eng. Des., vol 71 pp 117–124Google Scholar
  25. 25.
    Oedjoe D and Buchman BH (1966) Trans. Inst. Chem. Eng., vol 44 no 10 p 364Google Scholar
  26. 26.
    Petry G (1983) Two-phase flow of R12 in capillary tubes under the critical flow state. Ph. D. Thesis, Technical University of Munich, GermanyGoogle Scholar
  27. 27.
    Richardson JF and Zaki WN (1954) Sedimentation and fluidization: Part I, Trans. Instn. Chem. Eng., vol 32 pp 35–53Google Scholar
  28. 28.
    Rowe PN (1987) A convenient empirical equation for the estimation of the Richardson-Zaki exponent, Chem. Eng. Science, vol 42 no 11 pp 2795–2796CrossRefGoogle Scholar
  29. 29.
    Sakagushi T, Minagawa H, Kato Y, Kuroda N, Matsumoto T, and Sohara K (1987) Estimation of in-situ volume fraction of each phase in gas-liquid-solid three-phase flow, Trans. of JSME, vol 53 no 487 pp 1040–1046Google Scholar
  30. 30.
    Sakaguchi T et al. (1986) Volumetric fraction of each phase in gas-liquid and liquid-solid two-phase flow, Memories of the faculty of engineering, Kobe University, no 33 pp 73–102Google Scholar
  31. 31.
    Sakaguchi T, Minagawa H, and Sahara K (March 22–27, 1987) Estimation of volumetric fraction of each phase in gas-liquid-solid three-phase flow, Proc. of the ASME-JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, pp 373–380Google Scholar
  32. 32.
    Sakaguchi T, Minagawa H, Tomiama A, and Sjakutsui H (Jan.1990) Estimation of volumetric fraction in liquid-solid two-phase flow, Trans. JSME, vol 56 no 521 pp 5–10 (in Japanese)Google Scholar
  33. 33.
    Staengel G and Mayinger F (March 23–24, 1989) Void fraction and pressure drop in subcooled forced convective boiling with refrigerant 12, Proc. of 7th Eurotherm Seminar Thermal Non-Equilibrium in Two-Phase Flow, Roma pp 83–97Google Scholar
  34. 34.
    Wallis GB (1969) One dimensional two-phase flow, New York: McGraw HillGoogle Scholar
  35. 35.
    Wallis GB (1974) The terminal speed of single drops or bubbles in an infinite medium, Int. J. Multi phase Flow, vol 1 pp 491–511CrossRefGoogle Scholar
  36. 36.
    Wallis GB, Richter H J, and Kuo J T (Dec. 1976) The separated flow model of two-phase flow, EPRI NP-275Google Scholar
  37. 37.
    Zuber N and Findlay JA (Nov. 1965) Average volumetric concentration in two-phase flow systems, Trans. ASME, J. of Heat Transfer, vol 84 no 4 pp 453–465Google Scholar
  38. 38.
    Zwirin Y, Hewitt GF and Kenning DB (1989) Experimental study of drag and heat transfer during boiling on free falling spheres, Heat and Technology, vol 7 no 3–4 pp 13–23Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations