Film boiling on vertical plates and spheres


Heat Transfer Coefficient Natural Convection Versus Versus Versus Mixed Convection Vertical Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achenbach E (1993) Heat and flow characteristics of packed beds, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Kelleher MD et al. (eds.) Elsevier, pp 287–293Google Scholar
  2. 2.
    Analytis GT, Yadiragoglu G (Oct. 15–18, 1985) Analytical modeling of IAFB, Proc. of the Third Int. Topical Meeting on Reactor Thermal Hydraulics, Newport, Rhode Island, USA, Chiu C and Brown G (eds) vol 1 paper no 2.BGoogle Scholar
  3. 3.
    Bromley LA (1950) Heat transfer in stable film boiling, Chem. Eng. Prog., vol 46 no 5 pp 221–227Google Scholar
  4. 4.
    Bromley LA (Dec. 1952) Effect of heat capacity of condensate, Industrial and Engineering Chemistry, vol 44 no12 pp 2966–2969Google Scholar
  5. 5.
    Bromley LA, LeRoy NR, Rollers JA (Dec. 1953) Heat transfer in forced convection film boiling, Industrial and Engineering Chemistry, vol 45 pp 2639–2646CrossRefGoogle Scholar
  6. 6.
    Bui TD, and Dhir VK (November 1985) Film boiling heat transfer on isothermal vertical surface. ASME Journal of Heat Transfer, vol 107 pp 764–771Google Scholar
  7. 7.
    Coury GE, Dukler AE (1970) Turbulent film boiling on vertical surfaces-A study including the interface waves, 4th International Heat Transfer Conference, Paper no B.3.6Google Scholar
  8. 8.
    Dhir VK, Purohit GP (1978) Subcooled film-boiling heat transfer from spheres, Nuclear Engineering and Design, vol 47 pp 49–66CrossRefGoogle Scholar
  9. 9.
    Epstein M, Heuser GM (1980) Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer, vol 23 pp 179–189CrossRefGoogle Scholar
  10. 10.
    Fodemski TR, Hall WB (1982) Forced convection film boiling on a sphere immersed in (a) sub-cooled or (b) superheated liquid, Proc. 7th Int. Heat Transfer Conference, Muenchen, vol 4 pp 375–739Google Scholar
  11. 11.
    Fodemski TR (1985) The influence of liquid viscosity and system pressure on stagnation point vapor thickness during forced convection film boiling, Int. J. Heat Mass Transfer, vol 28 pp 69–80CrossRefGoogle Scholar
  12. 12.
    Fodemski TR, Stagnation point oscillation and stability of forced convection film boiling on a sphere immersed in (a) sub-cooled or (b) superheated liquid, Proc. 7th Int. Heat Transfer Conference, Muenchen, vol 4 pp 369–773Google Scholar
  13. 13.
    Fodemski TR (1992) Forced convection film boiling in the stagnation region of molten drop and its application to vapor explosions, Int. J. Heat Mass Transfer, vol 35 pp 2005–2016CrossRefGoogle Scholar
  14. 14.
    Frederking THK, Chapman RC, Wang S (1965) Heat transport and fluid motion during cooldown of single bodies to low temperatures, International Advances in Cryogenic Engineering, Timmerhaus KD (ed) Plenum Press, New York, pp 353–360Google Scholar
  15. 15.
    Gnielinski V (1978) Gleichungen zur Berechnung des Waerme und Stoffaustausches in durchstroemten ruhenden Kugelschuettungen bei mittleren und grossen Pecletzahlen. Verfahrenstechnik, vol 12 pp 363–366Google Scholar
  16. 16.
    Kolev NI (April 3–7 1995) IVA4 Computer code: The model for film boiling on a sphere in subcooled, satutated and superheated water, Proc. Second Int. Conference On Multiphase Flow, Kyoto, Japan. Presented also in (14–15 Nov. 1994) „Workshop zur Kühlmittel/Schmelze-Wechselwirkung“, Köln, GermanyGoogle Scholar
  17. 17.
    Kolev NI (27–29 September 1995) IVA4 Computer code: An universal analyzer for multi-phase flows and its applicability to melt water interaction, Proc. of the Technical committee meeting on advances in and experiences with accidents consequences analysis, held at Vienna, Austria, IAEA-TC-961, Vienna, AustriaGoogle Scholar
  18. 18.
    Kolev NI (October 15–16, 1996) Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? 7th FARO Experts Group Meeting Ispra. (5th–8th November 1996) Proceedings of OECD/CSNI Workshop on Transient thermalhydraulic and neutronic codes requirements, Annapolis, MD, USA. (June 2–6, 1997) 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermo-dynamics, ExHFT 4, Brussels. (June 22–26, 1997) ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA, Invited PaperGoogle Scholar
  19. 19.
    Kolev NI (19th–21st May 1997) Verification of the IVA4 film boiling model with the data base of Liu and Theofanous, Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, JapanGoogle Scholar
  20. 20.
    Kolev NI (June 2–6, 1997) Film boiling: vertical plates, Proceedings of 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics EXHFT 4, Brussels, BelgiumGoogle Scholar
  21. 21.
    Kolev NI (1998) Film boiling on vertical plates and spheres, Experimental Thermal and Fluid Science, vol 18 (1998) pp 97–115CrossRefGoogle Scholar
  22. 22.
    Lanzenberger K (1997) Radiation models for multi-phase flows. Part 1: Film boiling, Siemens report 1997, KWU NA-M/97/E024Google Scholar
  23. 23.
    Liu C, Theofanous TG (August 1995) Film boiling on spheres in single-and two-phase flows Part 1: Experimental Studies ANS Proceedings, Part 2: A Theoretical Study, National Heat Transfer Conference, PortlandGoogle Scholar
  24. 24.
    Meyer L, Schumacher G (April 1996) QUEOS a simulation-experiment of the premixing phase of steam explosion with hot spheres in water base case experiments, Forschungszentrum Karlsruhe Technik und Umwelt, Karlsruhe, Wissenschaftliche Berichte FZKA 5612Google Scholar
  25. 25.
    Nigmatulin NI et al. (1994) Interface oscilations and heat transfer mechanism at film boiling, Proc. of the Tenth International Heat Transfer Conference, Brighton, UKGoogle Scholar
  26. 26.
    Nishio S, Ohtake H (1993) Vapor film unit model and heat transfer correlation for natural convection film boiling with wave motion under subcooled conditions. Int. J. Heat Mass Transfer, vol 36 no 10 pp 2541–2552CrossRefGoogle Scholar
  27. 27.
    Nishikawa K, Ito T (1966) Two-phase boundary-layer treatment of free convection film boiling, Int. J. Heat Mass Transfer, vol 9 pp 103–115CrossRefGoogle Scholar
  28. 28.
    Nishikawa K, Ito T, Matsumoto K (1976) Investigation of variable thermophysical Property problem concerning pool film boiling from vertical plate with prescribed uniform temperature, Int. J. Heat Mass Transfer, vol 19 pp 1173–1182CrossRefGoogle Scholar
  29. 29.
    Nusselt WZ (1916) Z. Ver. deut. Ing., vol 60 pp 541–569Google Scholar
  30. 30.
    Okkonen T et al (August 3–6, 1996) Film boiling on a long vertical surface under high heat flux and water subcooling conditions, Proc. of the 31st Nat. Heat Transfer Conference, Houston, TexasGoogle Scholar
  31. 31.
    Sakurai A, Shiotsu M, Hata K (1986) Effect of subcooling on film boiling heat transfer from horizontal cylinder in a pool water, Proc. 8th Int. Heat Transfer Conf., vol 4 pp 2043–2048Google Scholar
  32. 32.
    Sakurai A (1990) Film boiling heat transfer, Proc. of the Ninth Intrn. Heat Transfer Conference, Jerusalem, Israel, Hetstroni G (ed), vol 1 pp 157–187Google Scholar
  33. 33.
    Sparrow EM (1964) The effect of radiation on film boiling heat transfer, Int. J. Heat and Mass Transfer, vol 7 pp 229–238CrossRefGoogle Scholar
  34. 34.
    Suryanarayana NV, Merte H (1972) Film boiling on vertical surfaces, J. Heat Transfer, vol 94 pp 337–383Google Scholar
  35. 35.
    Vaeth L (March 1995) Radiative heat transfer for the transient three phase three component flow model IVA3, Kernforschungszentrum Karlsruhe GmbH, INR, Interner Bericht 32.21.02/10A, INR-1914, PSF-3212Google Scholar
  36. 36.
    Witte LC (August 1968) Film boiling from a sphere, I&EC Fundamentals, vol 7 no 3 pp 517–518Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations