Drag Force Drag Coefficient Versus Versus Versus Versus Versus Versus Versus Slug Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achenbach E (1993) Heat and flow characteristics of packed beds, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Kelleher M D et al. (eds) ElsevierGoogle Scholar
  2. 2.
    Ambrosini W, Andreussi P and Azzopardi BJ (1991) Int. J. Multiphase Flow, vol 17 no 4 pp 497–507Google Scholar
  3. 3.
    Aritomi M, Inoue A, Aoki S and Hanawa K (1990) Thermo-hydraulic behavior of inverted annular flow, NED vol 120 pp 281–291CrossRefGoogle Scholar
  4. 4.
    Bharathan D, Richter HT and Wallis GB (1978) Air-water counter-current annular flow in vertical tubes, EPRI-NP-786Google Scholar
  5. 5.
    Bharathan D, Wallis GB, Richter HT (1979) Air-water countercurrent annular flow. EPRI NP-1165, Electric Power Research Inst., Palo Alto, CaliforniaGoogle Scholar
  6. 6.
    Brinkman HC (1951) J. Chem. Phys., vol 6 p 571Google Scholar
  7. 7.
    Brinkman HC (1952) J. Chem. Phys., vol 20 p 571CrossRefGoogle Scholar
  8. 8.
    Brooks RH and Corey AT (1966) Properties of porous media affecting fluid flow, J. Irrig. and Drainage Div. Proc. ASChE, vol 92, IR2 pp 61Google Scholar
  9. 9.
    Brown GG et al. (1950) Unit operations, J. Wiley and Sons, Inc., New York, pp 210–228Google Scholar
  10. 10.
    Ergun S (1952) Fluid flow through packed columns, Chem. Eng. Prog., vol 48 no 2 pp 89–94Google Scholar
  11. 11.
    Geary NW and Rice RG (Oct. 1991) Circulation in bubble columns: correlations for distorted bubble shape, AIChE Journal, vol 37 no 10 pp 1593–1594CrossRefGoogle Scholar
  12. 12.
    Govan AH, Hewitt GF, Richter HJ, and Scott A (1991) Flooding and chum flow in vertical pipes, Int. J. Multiphase Flow, vol 17 no 1 pp 27–44CrossRefGoogle Scholar
  13. 13.
    Hugmark GA (Sept. 1973) Film thickness, entrainment and pressure drop in upward annular and dispersed flow, AIChEJ, vol 19 no 5 pp 1062–1065CrossRefGoogle Scholar
  14. 14.
    Idelchik IE (1975) Handbook of hydraulic resistance, Second Edition, Hemisphere, Washington, translated from Russian in 1986Google Scholar
  15. 15.
    Ishii M and Zuber N (1978) Relative motion and interfacial drag coefficient in dispersed two-phase flow of bubbles, drops and particles, Paper 56 a, AIChE 71st Ann. Meet., MiamiGoogle Scholar
  16. 16.
    Ishii M and Chawla TC (Dec.1979) Local drag laws in dispersed two-phase flow, NUREG/CR-1230, ANL-79-105Google Scholar
  17. 17.
    Lee SC and Bankoff SG (1983) Stability of steam-water countercurrent flow in an inclined channel. J. Heat Transfer, vol 105 pp 713–718Google Scholar
  18. 18.
    Lepinski RJ (Apr. 1984) A coolability model for postaccident nuclear reactor debries, Nucl. Technology, vol 65 pp 53–66Google Scholar
  19. 19.
    Lopes JCB and Dukler AE (Sept.1986) Droplet entrainment in vertical annular flow and its contribution to momentum Transfer, AIChE Journal, vol 32 no 9 pp 1500–1515CrossRefGoogle Scholar
  20. 20.
    Militzer J, Kann J M, Hamdullahpur F, Amyotte P R, Al Towel A M (1998) Drag coefficients of axisymetric flow arround individual spheroidal particles, Powder Technol., vol 57 pp 193–195CrossRefGoogle Scholar
  21. 21.
    Nigmatulin BI (1982) Heat and mass transfer and force interactions in annular-dispersed two-phase flow, 7th Int. Heat Transfer Conf., Munich, pp 337–342Google Scholar
  22. 22.
    Oseen CW (1910) Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Ark. F. Math. Astron. Och. Fys., vol 6 no 29Google Scholar
  23. 23.
    Ratel G and Bestion D (2000) Analysis with CHATHARE code of the stratified flow regime in the MERESA hot leg entrainment tests, 38th European Two Phase Group Meeting, KarlsruheGoogle Scholar
  24. 24.
    Reed AW (Feb. 1982) The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool, PhD Thesis, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  25. 25.
    Roscoe R and Brit J (1952) Appl. Phys., vol 3 p 267Google Scholar
  26. 26.
    Roscoe R (1952) Brit. Appl. Phys., vol 3 p 26Google Scholar
  27. 27.
    Schiller L and Naumann AZ (1935) Z. Ver. Deut. Ing., vol 77 p 318Google Scholar
  28. 28.
    Stephan M and Mayinger F (1990) Countercurrent flow limitation in vertical ducts at high system pressure, Hetstroni G (ed), Proc. of The Ninth International Heat Transfer Conference, Jerusalem, Israel, vol 6 pp 47–52Google Scholar
  29. 29.
    Stokes GG (1880) Mathematical and physical papers, vol 1, Cambridge University Press, LondonGoogle Scholar
  30. 30.
    Stuhmiller JH, Ferguson RE and Meister CA (November 1989) Numerical simulation of bubble flow, EPRI Research Project Report NP-6557Google Scholar
  31. 31.
    Tomiyama A, Sakagushi T and Minagawa H (1990) Kobe University, private communicationGoogle Scholar
  32. 32.
    Tomiyama A, Matsuoka T, Fukuda T and Sakaguchi T (April 3–7, 1995) A simple numerical method for solving an incompressible two/fluid model in a general curvilinear coordinate system, Proc. of The 2bd International Conference on Multiphase Flow ‘95 Kyoto, Kyoto, Japan, vol 2 pp NU-23 to NU-30Google Scholar
  33. 33.
    Tomiyama A (June 8–12, 1998) Struggle with computational bubble dynamics, Third International Conference on Multiphase Flow, ICMF 98, Lyon, FranceGoogle Scholar
  34. 34.
    Tung VX and Dhir VK (1990) Finite element solution of multi-dimensional two-phase flow through porous media with arbitrary heating conditions, Int. J. Multiphase Flow, vol 16 no 6 pp 985–1002CrossRefGoogle Scholar
  35. 35.
    Ueda T (1981) Two-phase flow-flow and heat transfer, Yokendo, Japan (in Japanese)Google Scholar
  36. 36.
    VDI-Wärmeatlas, VDI-Verlag, Düsseldorf (1991) 6. Aufl.Google Scholar
  37. 37.
    Wallis GB (1969) One-dimensional two-phase flow, New York: McGraw HillGoogle Scholar
  38. 38.
    Wyckoff RD and Botset HG (1936) Physics, vol 73 p 25Google Scholar
  39. 39.
    Zvirin Y, Hewitt GF, Kenning DBR (1990) Boiling of free-falling spheres: Drag and heat transfer coefficients. Experimental Heat Transfer, vol 3 pp 185–214Google Scholar
  40. 40.
    Kolev NI (1977) Two-phase two-component flow (air-water steam-water) among the safety compartments of the nuclear power plants with water cooled nuclear reactors during lose of coolant accidents, PhD Thesis, Technical University DresdenGoogle Scholar
  41. 41.
    Biberg D (December 1999) An explicit approximation for the wetted angle in two-phase stratified pipe flow, The Canadian Journal of Chemical Engineering, vol 77 pp 1221–1224Google Scholar
  42. 42.
    Michaelides EE (March 2003) Hydrodynamic force and heat/mass transfer from particles, bubbles and drops The Freeman Scholar Lecture, ASME Journal of Fluids Engineering, vol 125 pp 209–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations