Bubble departure diameter


Bubble Growth Boiling Heat Transfer Particle Number Density Three Phase Flow Wall Superheating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borishanskii V, Bobrovich G, Minchenko F (1961) Heat transfer from a tube to water and to ethanol in nucleate pool boiling, Symposium of Heat Transfer and Hydraulics in Two-Phase Media, Kutateladze SS (ed) Gosenergoizdat, MoscowGoogle Scholar
  2. 2.
    Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser., vol 65 no 92 pp 211–213Google Scholar
  3. 3.
    Cornwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf., Toronto, vol 1 pp 157–161Google Scholar
  4. 4.
    Fritz W (1935) Berechnung des maximalen Volumens von Dampfblasen, Phys. Z., vol 36 no 11 pp 379–384.Google Scholar
  5. 5.
    Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser, vol 30 pp 39–48Google Scholar
  6. 6.
    Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, Transaction of the ASME, Journal of Heat Transfer, pp 17–29Google Scholar
  7. 7.
    Gaertner RF (1963) Distribution of active sites in the nucleate boiling of liquids, Chem. Eng. Prog. Symp. Series, no 41 vol 59 pp 52–61Google Scholar
  8. 8.
    Hsu YY, Graham RW (1976) Transport processes in boiling and two-phase systems, Hemisphere Publishing Corporation, Washington-London, Mc Graw-Hill Book Company, New YorkGoogle Scholar
  9. 9.
    lida Y, Kobayasi K (1970) An experimental investigation on the mechanism of pool boiling phenomena by a probe method, 4th Int. Heat Transfer Conf., Paris-Versailles, vol 5 no 3 B13 pp 1–11Google Scholar
  10. 10.
    Ishii M, Zuber N (1978) Relative motion, interfacial drag coefficients in dispersed two-phase flow of bubbles, drops and particles, Paper 56a, AIChE 71st Ann. Meeting, MiamiGoogle Scholar
  11. 11.
    Jakob M, Fritz W (1931) Forsch. Ing.-Wes., vol 2 p 435Google Scholar
  12. 12.
    Jakob M (1932) Kondensation und Verdampfung, Zeitschrift des Vereins deutscher Ingenieure, vol 76 no 48 pp 1161–1170Google Scholar
  13. 13.
    Jakob M, Linke W (1933) Der Waermeuebergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75–81Google Scholar
  14. 14.
    Jones OC (1992) Nonequilibrium phase change-1. Flashing inception, critical flow, and void development in ducts, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 189–234Google Scholar
  15. 15.
    Jones OC (1992) Nonequilibrium Phase Change-2. Relaxation models, general applications, and post heat transfer, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 447–482Google Scholar
  16. 16.
    Klausner JF, Mei R, Bernard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling, Int. J. of Heat and Mass Transfer, vol 36 no 3 pp 651–662Google Scholar
  17. 17.
    Kocamustafaogullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 no 9 pp 1377–1389Google Scholar
  18. 18.
    Kolev NI (October 5–8 1993) IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixt International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, FranceGoogle Scholar
  19. 19.
    Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156Google Scholar
  20. 20.
    Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, Elsevier, vol 6 pp 211–251CrossRefGoogle Scholar
  21. 21.
    Kolev NI (1994) The influence of mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, Elsevier, vol 8 pp 167–174CrossRefGoogle Scholar
  22. 22.
    Koumoutsos N, Moissis R, Spyridonos A (May 1968) A study of bubble departure in forced-convection boiling, Journal of Heat Transfer, Transactions of the ASME pp 223–230Google Scholar
  23. 23.
    van Krevelen DW, Hoftijzer PJ (1950) Studies of gas-bubble formulation, calculation of interfacial area in bubble contactor, Chem. Eng. Progr. Symp. Ser., vol 46 no 1 pp. 29–35Google Scholar
  24. 24.
    Kurihara HM, Myers J E (March 1960) The effect of superheat and surface roughness on boiling coefficients, A. I. Ch. E. Journal, vol 6 no 1 pp 83–91Google Scholar
  25. 25.
    Labuntsov DA (1974) State of the art of the nucleate boiling mechanism of liquids, Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, in Russian, pp. 98–115Google Scholar
  26. 26.
    Levy S (1967) Forced convection subcooled boiling prediction of vapor volume fraction, Int. J. Heat Mass Transfer, vol 10 pp 951–965CrossRefGoogle Scholar
  27. 27.
    Moalem D, Yijl W, van Stralen SJD (1977) Nucleate boiling at a liquid-liquid interface, letters heat and mass transfer, vol 4 pp 319–329Google Scholar
  28. 28.
    Nishikawa K, Fujita Y, Uchida S, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat and Mass Transfer, vol 27 no 9 pp 1559–1571CrossRefGoogle Scholar
  29. 29.
    Rallis C J, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051–1068CrossRefGoogle Scholar
  30. 30.
    Roll JB, Mayers JC (July 1964) The effect of surface tension on factors in boiling heat transfer, A.I.Ch.E.Journal, pp 330–344Google Scholar
  31. 31.
    Semeria RF (1962) Quelques resultats sur le mechanisme de l’ebullition, 7, J. de l’Hydraulique de la Soc. Hydrotechnique de FranceGoogle Scholar
  32. 32.
    Siegel R, Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, A.I.Ch.E. Journal, vol 10 no 4 pp 509–517Google Scholar
  33. 33.
    van Stralen SJD, Sluyter WM, Sohal MS (1975) Bubble growth rates in nucleate boiling of water at subatmospheric pressures, Int. J. Heat and Mass transfer, vol 18 pp 655–669CrossRefGoogle Scholar
  34. 34.
    van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USAGoogle Scholar
  35. 35.
    Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Journal of Heat Transfer, Transactions of the ASME, vol 100 pp 56–62Google Scholar
  36. 36.
    Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rise in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463–1470CrossRefGoogle Scholar
  37. 37.
    Vachon RI, Tanger GE, Davis DL, Nix GH (May 1968) Pool boiling on polished chemically etched stainless-steel surafces, Transactions of ASME, Journal of Heat Transfer, pp 231–238Google Scholar
  38. 38.
    Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659–669Google Scholar
  39. 39.
    Wiebe JR (1970) Temperature profiles in subcooled nucleate boiling, M. Eng. thes., Mechanical Engineering Department, McMaster University, CanadaGoogle Scholar
  40. 40.
    Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Engng, Kyushu Univ, vol 15 p 97Google Scholar
  41. 41.
    Yang JY, Weisman J (1991) A phenomenological model of subcooled flow boiling in the detached bubble region, Int. J. Multiphase Flow, vol 17 no 1 pp 77–94CrossRefGoogle Scholar
  42. 42.
    Zeng LZ, Klausner JF, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems-1. Pool boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2261–2270CrossRefGoogle Scholar
  43. 43.
    Zeng L Z, Klausner JF, Bernard DM, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems-2. Flow boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2271–2279CrossRefGoogle Scholar
  44. 44.
    Zuber N (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat and Mass Transfer, vol 6 pp 53–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations