Nucleation in liquids


Bubble Growth Boiling Heat Transfer Static Contact Angle Single Bubble Nucleation Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abuaf N, Jones OC Jr, Wu BJC (May 1983) Critical flashing flows in nozzles with subcooled inlet conditions, J. of Heat Transfer, vol 105 pp 379–383Google Scholar
  2. 2.
    Algamir M, Lienhard JH (1981) Correlation of pressure undershoot during hot-water depressurisation. J. of Heat Transfer, vol 103 no 1 p 60Google Scholar
  3. 3.
    Arefeva EI, Aladev IT (July 1958) O wlijanii smatchivaemosti na teploobmen pri kipenii, Injenemo-Fizitcheskij Jurnal, vol 1 no 7 pp 11–17, in RussianGoogle Scholar
  4. 4.
    Avdeev AA, Maidanik VN, Selesnev LI, Shanin VK (1977) Calculation of the critical flow rate with saturated and subcooled water flashing through a cylindrical duct, Teploenergetika, vol 24 no 4 pp 36–38Google Scholar
  5. 5.
    Bartak J (1990) A study of the rapid depressurization of hot water and the dynamics of vapor bubble generation in superheated water, Int. J. Multiphase Flow, vol 16 no 5 pp 789–798CrossRefGoogle Scholar
  6. 6.
    Besand WH (1859) Hydrostatics and hydrodynamics, Deighton Bell, Cambridge, p 170Google Scholar
  7. 7.
    Blander M, Katz JL (1975) Bubble nucleation in liquids. AIChE, vol 21 pp 833–838CrossRefGoogle Scholar
  8. 8.
    Blake FG (1949) The onset of cavitation in liquids. I. Acoustic Res. Lab., Harvard Univ., Tech. Memo. no 12Google Scholar
  9. 9.
    Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford, Ney YorkGoogle Scholar
  10. 10.
    Burnell JG (Dec.12, 1947) Flow of boiling water through nozzles, orifices and pipes, Engineering, pp 572–576Google Scholar
  11. 11.
    Comwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf. Heat Transfer, Toronto, vol 1 pp 157–161Google Scholar
  12. 12.
    Eberhard JG and Schnyders MC (1973) Application of the mechanical stability condition to the prediction of the limit of superheat for normal alkanes, ether and water. J. Phys. Chem. Vol 77 no 23 pp 2730–2736CrossRefGoogle Scholar
  13. 13.
    Faggiani S, Galbiati P, Grassi W (1981) Active site density, bubble frequency and departure on chemically etched surfaces, La Termotechnica, vol 29 no 10 pp 511–519Google Scholar
  14. 14.
    Fincke JR (August 5–8, 1984) Critical flashing flow of subcooled fluids in nozzles with contour discontinuities, Basic Aspects of Two Phase Flow and Heat Transfer, 22nd Nat. Heat Transfer Conference and Exhibition, Niagara Falls, New York, HTD vol 34 p 85–93Google Scholar
  15. 15.
    Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser., vol 30 no 30 pp 39–48Google Scholar
  16. 16.
    Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, transaction of the ASME, Journal of Heat Transfer, vol 87 pp17–29Google Scholar
  17. 17.
    Gibbs JW (1878) Thermodynamische Studien (Leipzig 1892), Amer. J. Sci. and Arts, vol 16 pp 454–455Google Scholar
  18. 18.
    Hutcherson MN, Henry RE, Wollersheim DE (Nov. 1983) Two-phase vessel blowdown of an initially saturated liquid-Part 2: Analytical, Trans. ASME, J. Heat Transfer, vol 105 pp 694–699Google Scholar
  19. 19.
    Jakob M, Linke W (1933) Der Wärmeübergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75–81Google Scholar
  20. 20.
    Johov KA (1969) Nucleations number during steam production, Aerodynamics and Heat Transfer in the Working Elements of the Power Facilities, Leningrad, in Russian, Proc. CKTI, vol 91 pp 131–135Google Scholar
  21. 21.
    Jones OC Jr (1979) Flashing inception in flowing liquids, non-equilibrium two-phase flow, in Chan JC and Bankoff SG (eds), ASME, New York, pp 29–34Google Scholar
  22. 22.
    Jones OC Jr (1982) Towards a unified approach for thermal non-equilibrium in gasliquid systems, Nucl. Eng. and Design, vol 69 pp 57–73CrossRefGoogle Scholar
  23. 23.
    Jones OC (1992) Non-equilibrium phase change 1. Flashing inception, critical flow, and void development in ducts, Boiling Heat Transfer, Lahey RT Jr (ed) Elsevier Science Publishers BV, pp 189–234Google Scholar
  24. 24.
    Jones OC (1992) Nonequilibrium phase change 2. Relaxation models, general applications, and post heat transfer, in Lahey RT Jr (ed) Boiling heat transfer, Elsevier Science Publishers BV, pp 447–482Google Scholar
  25. 25.
    Kaishew R, Stranski IN (1934) Z. Phys. Chem., vol 26 p 317Google Scholar
  26. 26.
    Kocamustafaogullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 pp 1377–1389Google Scholar
  27. 27.
    Kottowski HM (1973) Nucleation and superheating effects on activation energy of nucleation, in Progress in Heat and Mass Transfer, Dwyer OE (ed) Pergamon, New York, vol 7 pp 299–324Google Scholar
  28. 28.
    Kurihara HM, Myers JE (March 1960) The effect of superheat and surface roughness on boiling coefficients, AIChE Journal, vol 6 no 1 pp 83–91CrossRefGoogle Scholar
  29. 29.
    Labuntsov DA (1963) Approximate theory of heat transfer by developed nucleate boiling (Russ.), Izvestiya AN SSSR, Energetika i transport, no 1Google Scholar
  30. 30.
    Lienhard JH (1981) Homogeneous nucleation and the spinoidal line, J. of Heat Transfer, vol 103 p 72Google Scholar
  31. 31.
    Lienhard JH, A Heat Transfer Textbook, Prentice-Hall, Inc., Engelwood Cliffts, New Jersey 07632Google Scholar
  32. 32.
    Malnes D, Solberg K (May 1973) A fundamental solution to the critical two-phase flow problems, applicable to loss of coolant accident analysis. SD-119, Kjeller Inst., NorwayGoogle Scholar
  33. 33.
    Mikic BB, Rohsenow WM (May 1969) A new correlation of pool-boiling data including the effect of heating surface characteristics, Transactions of the ASME, J. Heat Transfer, vol 91 pp 245–250Google Scholar
  34. 34.
    Neppiras EA and Noltingk BE (1951) Cavitation by ultrasonic: theoretical conditions for onset of cavitation. Proc. Phys. Soc., London, vol 64B pp 1032–1038Google Scholar
  35. 35.
    Rallis CJ, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051–1068CrossRefGoogle Scholar
  36. 36.
    Rayleigh L (1917) On the pressure developed in a liquid during the collapse of spherical cavity, Phil. Mag., vol 34 p 94Google Scholar
  37. 37.
    Riznic J, Ishii M (1989) Bubble number density and vapor generation in flashing flow, Int. J. Heat Mass Transfer, vol 32 pp 1821–1833CrossRefGoogle Scholar
  38. 38.
    Rohatgi US, Reshotko E (1975) Non-equilibrium one dimensional flow in variable area channels. In Lahey RT and Wallis GB (eds) Non-equilibrium two phase flows, ASME, New YorkGoogle Scholar
  39. 39.
    Siegel R, Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, AIChE Journal, vol 10 no 4 pp 509–517CrossRefGoogle Scholar
  40. 40.
    Simoneau RJ (1975) Pressure distribution in converging diverging nozzle during two phase choked flow of subcooled nitrogen. Lahey RT and Wallis GB (eds) Nonequilibrium two phase flows, ASME, New YorkGoogle Scholar
  41. 41.
    Skripov VP et al. (1980) Thermophysical properties of liquids in meta-stable state, Moskva-Atomisdat, in RussianGoogle Scholar
  42. 42.
    Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Transactions of the ASME, Journal of Heat Transfer, vol 100 pp 56–62Google Scholar
  43. 43.
    Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rate in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463–1470CrossRefGoogle Scholar
  44. 44.
    Tolubinski IS (1980) Boiling heat transfer, Kiev, Naukova Dumka, in RussianGoogle Scholar
  45. 45.
    Volmer M (1939) Kinetik der Phasenbildung, Dresden und Leipzig, Verlag von Theodor SteinkopfGoogle Scholar
  46. 46.
    Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659–669Google Scholar
  47. 47.
    Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Engng; Kyushu Univ., vol 15 p 97Google Scholar
  48. 48.
    Basu N, Warrier GR and Dhir VK (2002) Onset of nucleate boiling and active nucleation site density during subcooled flow boiling, J. Heat Transfer, vol 124 pp 717–728CrossRefGoogle Scholar
  49. 49.
    Benjamin RJ and Balakrishnan AR (1997) Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties, Exp. Thermal Fluid Sci., vol 15 pp 32–42CrossRefGoogle Scholar
  50. 50.
    Benjamin RJ and Balakrishnan AR (1997) Nucleation site density in pool boiling of binary mixtures: effect of surface microroughness and surface and liquid physical properties, Can. J. Chem. Eng., vo 75 pp 1080–1089Google Scholar
  51. 51.
    Hibiki T and Ishii M (2003) Active nucleation site density in boiling systems, International Journal of Heat and Mass Transfer, vol 46 pp 2587–2601CrossRefGoogle Scholar
  52. 52.
    Lienhard JH (1976) Correlation for the limiting liquid superheat, Chem. Eng. Sci., vol 31 pp 847–849CrossRefGoogle Scholar
  53. 53.
    Bergles AE and Rohsenow WM (1964) The determination of forced convection surface-boiling heat transfer, ASME J. Heat Transfer, vol 1 pp 365–372Google Scholar
  54. 54.
    Zuber N (1963) Nucleate boiling: The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Transfer, vol 6 pp 53–79CrossRefGoogle Scholar
  55. 55.
    Griffith P and Wallis GB (1960) The role of the surface conditions in nucleate boiling, Chem. Eng. Prog. Symp., vol 56 pp 49–63Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations