Advertisement

Fragmentation of melt in coolant

Keywords

Liquid Metal Steam Explosion Mechanical Fragmentation Bubble Collapse Vapor Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyoshi R, Nishio S, Tanasawa I (1990) A study of the effect of non-condensable gas in the vapor film on vapor explosion, Int. J. Heat Mass Transfer, vol 33 no 4 pp 603–609CrossRefGoogle Scholar
  2. 2.
    Ando M, Caldarola L (1982) Triggered fragmentation experiments at Karlsruhe, in Müller U and Günter C (eds), Post Accident Debris Cooling, Proc. of the Fifth Post Accident Heat Removal information Exchange meeting, NRC Karlsruhe, G. Braun Karlsruhe, pp 13–21Google Scholar
  3. 3.
    Ando K (1984) Experiment zur getriggerten Fragmentation an einem schmelzflüssigen Kupfertröpfen in Wasser, KIK 3667Google Scholar
  4. 4.
    Arakeri VH et al. (1978) Thermal interaction for molten tin dropped into water, Int. J. Heat Mass Transfer, vol 21 pp 325–333CrossRefGoogle Scholar
  5. 5.
    Bang KH, Kim MK (1995) Boiling characteristics od delute polymer solutions and implications for the suppression of vapor explosions, Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142, pp 1677–1687Google Scholar
  6. 6.
    Bankoff SG, Kovarik F, Yang JW (1983) A model for fragmentation of molten metal oxides in contact with water, Proc. Int. Mtg. on LWR Severe Accident Evaluation, Cambridge, MA pp TS-6.6-1 to 6.6-8Google Scholar
  7. 7.
    Bankoff SG, Yang JW (October 10–13, 1989) Studies Relevant to in-Vessel Steam Explosions, Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe. Müller U, Rehme K and Rust K (eds), G. Braun, Karlsruhe, p 312Google Scholar
  8. 8.
    Becker KM, Linland KP (April 1991) The effect of surfactants on hydrodynamic fragmentation and steam explosions, KTK-NEL-50, Rev. Ed.Google Scholar
  9. 9.
    Belman R, Pennington RH (1954) Effect of surface tension and viscosity on Taylor instability, Quart. Appl. Maths, vol 12 pp 151–162Google Scholar
  10. 10.
    Benjamin TB, Ellis A T (1966) Phil. Trans. R. Soc. A, vol 260 pp 221–240Google Scholar
  11. 11.
    Berman LD (1961) Soprotivlenie na granize razdela fas pri plenochnoi kondensazii para nizkogo davleniya, Tr. Vses. N-i, i Konstrukt in-t Khim Mashinost, vol 36 p 66Google Scholar
  12. 12.
    Bjorkquist GM (1975) An experimental investigation of molten metal in water, TID-26820Google Scholar
  13. 13.
    Bjornard TA et al. (1974) The pressure behavior accompanying the fragmentation of tin in water, Transaction of American Nuclear Society, vol 29 p 247Google Scholar
  14. 14.
    Board S J, Farmer CL, Poole DH (October 1972) Fragmentation in thermal explosions, Berkeley Nuclear Laboratories, RD/B/N2423, CFR/SWP/P (72) p 81Google Scholar
  15. 15.
    Brayer C, Berthoud G (19th–21th May 1997) First vapor explosion calculations performed with MC3D thermal-hydraulic code, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, JapanGoogle Scholar
  16. 16.
    Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford, Ney YorkGoogle Scholar
  17. 17.
    Buchman DJ (1973) Penetration of a solid layer by a liquid jet, J. Phys.D: Appl. Phys., vol 6 pp 1762–1771CrossRefGoogle Scholar
  18. 18.
    Bürger M et al. (1991) Examination of thermal detonation codes and included fragmentation models by means of triggered propagation experiments in a tin/water mixture, Nucl. Eng. Des., vol 131 pp 61–70CrossRefGoogle Scholar
  19. 19.
    Bürger M, Cho SH, von Berg E, Schatz A (January 5–8, 1993) Modeling of drop fragmentation inthermal detonation waves and experimental verification, Specialist’s Meeting on Fuel-Coolant Interactions, Santa Barbara, California, USAGoogle Scholar
  20. 20.
    Buetner R, Zimanowski B (1998) Physics of thermohydraulic explosions, Physical Review E, vol 57 no 5Google Scholar
  21. 21.
    Buxton LD, Nelson LS, Benedick WB (1979) Steam explosion triggering in efficiency studies, Forth CSNI Specialists Meeting on Fuel-Coolant Interaction in Nuclear Reactor Safety, Bournemouth, UK, pp 387–408Google Scholar
  22. 22.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, Oxford Science Publications, Second edition, Oxford University PressGoogle Scholar
  23. 23.
    Chapman R, Pineau D, Corradini M (May 22–25, 1997) Mitigation of vapor explosions in one-dimensional large scale geometry with surfactant coolant additives, Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, pp 47–58Google Scholar
  24. 24.
    Chen X, Yuen WW, Theofanous T (1995) On the constitutive description of micro-interactions concept in steam explosions, Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142.Google Scholar
  25. 25.
    Cho DH, Gunther WH (June 1973) Fragmentation of molten materials dropped into water, Trans. of the Am. Nucl. Soc., vol 16 no 1 pp 185–186Google Scholar
  26. 26.
    Ciccarelli G (1992) Investigation of vapor explosions with single molten metal drops in water using x-ray, PhD Thesis, McGill University, Montreal, Quebec, CanadaGoogle Scholar
  27. 27.
    Corradini M (1982) Analysis and Modelling of Large Scale Steam Explosion Experiments, Nucl. Sci. Eng., vol 82 pp 429–447Google Scholar
  28. 28.
    Corradini ML (March 10–14, 1996) Vapor explosion phenomena: scaling considerations, Proc. of the ASME-JSME 4th International Conference on Nuclear Engineering, New Orleans, Louisiana U.S.A., vol 1 Part A, ASME 1996, pp 309–316Google Scholar
  29. 29.
    Cronenberg AW (August 29, 1973) Solidification phenomena and fragmentation, in Sachs RG and Kyger JA, Reactor development program progress report, ANL-RDP-18, Liquid Metal Fast Breader Reactors (UC-79), p 7.19Google Scholar
  30. 30.
    Drumheller DS (1979) The initiation of melt fragmentation in fuel-coolant interactions, Nucl. Sc. Engineering, vol 72 pp 347–356Google Scholar
  31. 31.
    Dullforce TA, Buchanan D, Peckover R S (1986) Self-triggering of small scale fuel-coolant interaction: I. Experiments, Journal of Physics D: Applied Physics, vol 9 pp 1295–1303CrossRefGoogle Scholar
  32. 32.
    Ellison PG, Hyder ML, Monson PR, DeWald AB Jr, Long TA, and Epstein M (April–June 1993) Aluminium-uranium fuel-melt behavior during severe nuclear reactor accidents, Nuclear Safety, vol 34 no 2 pp 196–212Google Scholar
  33. 33.
    Epstein M, Fauske K (August 4–7, 1985) Steam film instability and the mixing of core-melt jets and water, ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, pp 277–284Google Scholar
  34. 34.
    Epstein M (Aug. 1991) Underwater vapor phase burning of aluminium particles and on aluminium ignition during steam explosions, WSRC-RP-91-1001, Westinghouse Savannah River Co.Google Scholar
  35. 35.
    Fauske HK (1973) On the mechanism of uranium dioxide-sodium explosive interactions, Nuclear Science and Engineering, vol 51 pp95–101Google Scholar
  36. 36.
    Fedorovich ED, Rohsenow W M (1968) The effect of vapor subcooling on film condensation of metals, Int. J. of Heat Mass Transfer, vol 12 pp 1525–1529CrossRefGoogle Scholar
  37. 37.
    Fletcher DF, Thyagaraja A (June 1989) A mathematical model of melt/water detonation, Appl. Math. Modelling, vol 13 pp 339–347CrossRefGoogle Scholar
  38. 38.
    Fritz W, Ende W (1966) Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Phys. Z., vol 37 pp 391–401Google Scholar
  39. 39.
    Froehlich G (1991) Propagation of fuel-coolant interactions in multi-jet experiments with molten tin, Nuclear Engineering and Design, vol 131 pp 209–221CrossRefGoogle Scholar
  40. 40.
    Frost D L, Ciccarelli G (July 24–27, 1988) Propagation of explosive boiling in molten tin-water mixtures, Proc. Nat. Heat Transfer Conference, HDT-96, Vol.2, Ed. H. R. Jacobs, Houston, Texas, pp 539–574Google Scholar
  41. 41.
    Gelfand BE, Gubin SA et al. (1977) Influence of gas density on breakup of bubbles, Dokl. USSR Ac. Sci., vol 235 no 2 pp 292–294Google Scholar
  42. 42.
    Gibson DC (1968) Cavitation adjacent to plane boundaries. Proc. Australian Conf. On Hydraulic and Fluid Machinery, pp 210–214Google Scholar
  43. 43.
    Gibson DC and Blacke JR (1982) The growth and collapse of bubbles near deformable surface. App. Sci. Res., vol 38 pp 215–224CrossRefGoogle Scholar
  44. 44.
    Inoue A, Aritomi M (October 10–13, 1989) An Analytical model on vapor explosion of a high temperature molten metal droplet with water induced by a pressure pulse, Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe. Müller U, Rehme K and Rust K (eds),G. Braun, Karlsruhe, p 274Google Scholar
  45. 45.
    Henkel P (1987) Hüllrohrmaterialbewegung während eines Kühlmittelverluststörfalls in einem schnellen, natriumgekühlten Reaktor, Dissertation, Kemforschungszentrum KarlsruheGoogle Scholar
  46. 46.
    Henry RE, Fauske HK (March 10–14, 1996) A diferent approach to fragmentation in steam explosions, Proc. of the ASME-JSME 4th International Conference on Nuclear Engineering, New Orleans, Louisiana U.S.A., vol 1 Part A, ASME 1996, pp 309–316Google Scholar
  47. 47.
    Hertz H (1882) Wied. Ann., vol 17 p 193Google Scholar
  48. 48.
    Hohmann H, Magalon D, Huhtiniemi I, Annunziato A, Yerkess A (October 1995) Recent results in FARO/KROTOS test series, Trans.23rd WRSIM, Bethesda MDGoogle Scholar
  49. 49.
    Huhtiniemi I, Magalon D, Hohmann H (19th–21th May 1997) Results of recent KROTOS FCI tests: alumna vs. corium melts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, JapanGoogle Scholar
  50. 50.
    Kammer C (1995) Aluminium-Taschenbuch, Bd.1 Grundlagen und Wekstoffe, Herausgeber: Aluminium-Zentrale Düsseldorf, Aluminium-Verlag DüsseldorfGoogle Scholar
  51. 51.
    Kim BJ, Corradini ML (1986) Recent film boiling calculations: implication on fuel-coolant interactions, Int. J. Heat Mass Transfer, vol 29 pp 1159–1167CrossRefGoogle Scholar
  52. 52.
    Kim B, Corradini M (1988) Modeling of small scale single droplet fuel/coolant interactions, Nucl. Sci. Eng., vol 98 pp 16–28Google Scholar
  53. 53.
    Kim H, Krueger J, Corradini ML (October 10–13, 1989) Single droplet vapor explosions: effect of coolant viscosity, Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe. Müller U, Rehme K and Rust K (eds), G. Braun, Karlsruhe, p 261Google Scholar
  54. 54.
    Knowles JB (1985) A mathematical model of vapor film destabilization, Report AEEW-R-1 933Google Scholar
  55. 55.
    Knudsen M (1915) Ann. Physik, vol 47 p 697Google Scholar
  56. 56.
    Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, vol 6 pp 211–251CrossRefGoogle Scholar
  57. 57.
    Kolev NI (19th–21st May 1997) Verification of the IVA4 Film boiling model with the data base of liu and theofanous, Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, JapanGoogle Scholar
  58. 58.
    Kornfeld M, Suvorov L (1944) J. Appl. Physics, vol 15 pp 495–506CrossRefGoogle Scholar
  59. 59.
    Koshizuka S, Ikeda H, Oka Y (May 22–25, 1997) Effect on Spontaneous Nucleation on Melt Fragmentation in Vapor Explosions, Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, pp 185–192Google Scholar
  60. 60.
    Kowal MG, Dowling MF, Abdel-Khalik S I (1993) An experimental investigation of the effects of surfactants on the severity of vapor explosions, Nuclear Science and Engineering, vol 115 pp 185–192Google Scholar
  61. 61.
    Langmuir I (1913) Physik. Z., vol 14 p 1273Google Scholar
  62. 62.
    Langmuir I, Jones HA, Mackay GMJ (1927) Physic. Rev., vol 30 p 201CrossRefGoogle Scholar
  63. 63.
    Lide DR, Frederikse HPR (eds) (1997) CRC Handbook of chemistry and physics, 8th Edition, CRC Press, New York 1997Google Scholar
  64. 64.
    Magalon D, Huhtiniemi I, Hohmann H (19th–21th May 1997) Lessons leamt from FARO/TERMOS corium melt quenching experimnts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, JapanGoogle Scholar
  65. 65.
    Marangoni CGM (1871) Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys., vol 143 p 337Google Scholar
  66. 66.
    Matsumura K, Nariai H (March 10–14, 1996) The occurance condition of spontaneous vapor explosions, Int. Conf. on Nuclear Engineering ICONE-4, New Orleans, Louisiana, vol 1-Part A, ASME, pp 325–332Google Scholar
  67. 67.
    Matzke H (28–29 September 1998) Status of FARO debris analysis by ITU, Karlsruhe, 9th FARO Expert Meeting, IspraGoogle Scholar
  68. 68.
    Medhekar S, Amarasooriya WH, Theofanous TG (October 10–13, 1989) Integrated analysis of steam explosions, Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe. Müller U, Rehme K and Rust K (eds), G. Braun, Karlsruhe, p 319–326Google Scholar
  69. 69.
    Merzhanov AG, Grigoriev YM, Gal’chenko YA (1977) Aluminium ignition, Combustion Flame, vol 29 p 1CrossRefGoogle Scholar
  70. 70.
    Mills AF, Seban RA (1967) The condensation coefficient of water, J. of Heat Transfer, vol 10 pp 1815–1827Google Scholar
  71. 71.
    Mills AF (1967) The condensation of steam at low pressure, Techn. Report Series No. 6, Issue 39. Space Sciences Laboratory, University of California, BerkeleyGoogle Scholar
  72. 72.
    Mitsumura K, Nariai H, Egashira Y, Ochimizu M (May 22–25, 1997) Experimental study on the base triggering spontaneous vapor explosions for molten tin-water system, Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, pp 27–32Google Scholar
  73. 73.
    Nabavian K, Bromley LA (1963) Condensation coefficient of water; Chem. Eng. Sc., vol 18 pp 651–660CrossRefGoogle Scholar
  74. 74.
    Naylor P (1985) Film boiling destabilization, Ph.D. Thesis, University of ExeterGoogle Scholar
  75. 75.
    Nelson LS, Duda PM (1981) Steam explosion experiments with single drops of iron-oxide melted with CO2 laser, SAND81-1346, NUREG/CR-2295, Sandia National LaboratoryGoogle Scholar
  76. 76.
    Nelson LS, Guay KP (1986) Suppression of steam explosion in tin and FeAl2O3 melts by increasing the viscosity of the coolant, High Temperature and High Pressures, vol 18 pp 107–111Google Scholar
  77. 77.
    Nelson LS, Buxton LD (1980) Steam explosion triggering phenomena: stainless steel and corium-e simulants studied with a floodable arc melting apparatus, SAN77-0998, NUREG/CR-01222, Sandia National LaboratoriesGoogle Scholar
  78. 78.
    Nelson LS, Hyndman DA, Duda PM (July 21–25, 1991) Steam explosions of single drops of core-melt simulants: Triggering, work output and Hydrogen generation, Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, pp 324–330Google Scholar
  79. 79.
    Ojnesorge W (1936) Die Bildung von Tröpfen an Düsen und die Auflüssiger Strahlen, Z. Angew. Math. Mech., vol 16 pp 335–359Google Scholar
  80. 80.
    Ostrach S (1982) Low gravity fluid flows, Ann. Rev. Fluid Mech., vol 14 pp 313–345CrossRefGoogle Scholar
  81. 81.
    Peppler W, Till W, Kaiser A (Sept. 1991) Experiments on Thermal Interactions: Tests with A12O3 Droplets and Water, Kernforschungszentrum Karlsruhe, KfK 4981Google Scholar
  82. 82.
    Pilch M, Erdman CA, Reynolds AB (Aug. 1981) Acceleration induced fragmentation of liquid drops, Charlottesville, VA: Department of Nucl. Eng., University of Virginia, NUREG/CR-2247Google Scholar
  83. 83.
    Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of solid boundary, J. of Fluid Mechanics, vol 47 no 2 pp 283–290Google Scholar
  84. 84.
    Saito M, Sato K, Imahori S (July 24–July 27, 1988) Experimental study on penetration behaviours on water jet into Freon-11 and liquid nitrogen, ANS Proc. Nat. Heat Transfer Conference, HTC-vol 3. Jacobs HR (ed), Houston, TexasGoogle Scholar
  85. 85.
    Schröder-Richter D, Bartsch G (1990) The Leidenfrost phenomenon caused by a thermo-mechanical effect of transition boiling: A revisited problem of non-equilibrium thermodynamics, in Witte LC and Avedisian CT (eds) HTD-vol 136, Fundamentals of phase change: Boiling and condensation. Book No.H00589-1990, pp 13–20Google Scholar
  86. 86.
    Spencer BW et al. (August 4–7, 1985) Corium quench in deep pool mixing experiments, ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, pp 267–276Google Scholar
  87. 87.
    Shpillrain EE, Yakimovich KA, Tsitsarkin AF (1973) Experimental study of the density of liquid alumina up to 2750 C, High Temperures-High Pressures, vol 5 pp 191–198Google Scholar
  88. 88.
    Taleyarkhan R (Febr. 1990) Steam-explosion safety consideration for the advanced neutron source reactor at the Oak Ridge National Laboratory, ORNL/TM-11324Google Scholar
  89. 89.
    Tang J (1993) A complete model for the vapor explosion process, PhD Thesis, University of Wisconsin, Madison WIGoogle Scholar
  90. 90.
    Taylor GI (1935) Proc. Roy. Soc. A, vol 151 p 429. See also (1950) The instability of liquid surface when accelerated in a direction perpendicular to their plane, Proc. Roy. Soc. A, vol 201 pp 192–196Google Scholar
  91. 91.
    Taylor G (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I., Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, vol 201 pp 192–196Google Scholar
  92. 92.
    Thomson J (July–December 1855) On certain curious motions observable at the surfaces of wine and other alcoholic liquors, Philosophical Magazine and Journal of Science, vol X-Fourth Series, pp 330–333Google Scholar
  93. 93.
    Turbill D, Fisher JC (1949) Rate of nucleation in condensed systems, J. Chem. Phys., vol 17 pp 71CrossRefGoogle Scholar
  94. 94.
    Uludogan A, Corradini ML (Feb. 1995) Modeling of molten metal/water interactions, Nuclear Technology, vol 109 pp 171–186Google Scholar
  95. 95.
    Voinov OV and Voinov VV (1975) Numerical method of calculating non-stationary motions of ideal incompressible fluid with free surface. Sov. Phys. Dokl. Vol 20 pp 179–18091.Google Scholar
  96. 96.
    Yerkess (1997) TEXAS-IV Dynamic fragmentation model, private communication, 8th FARO Expert Meeting, Ispra, ItalyGoogle Scholar
  97. 97.
    Young MF (Sept. 1987) IFCI: An integrated code for calculation of all phases of fuel coolant interaction, NUREG/CR-5084, SAND87-1048Google Scholar
  98. 98.
    Young MF (1990) Application of the IFCI Integrated fuel-coolant interaction code to a fits-type pouring mode experiment, SAND89-1692CGoogle Scholar
  99. 99.
    Yuen WW, Chen X, Theofanous TG (1994) On the fundamental micro-interactions that support the propagation of steam explosions, NED, vol 146 pp 133–146CrossRefGoogle Scholar
  100. 100.
    Zimanowski B, Fröhlich G, Lorenz V (1995) Experiments on steam explosion by interaction of water with silicate melts, NED vol 155 pp 335–343CrossRefGoogle Scholar
  101. 101.
    Zimmer HJ, Peppler W, Jacobs H (October 10–13, 1989) Thermal fragmentation of molten alumina in sodium, Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe. Müller U, Rehme K and Rust K (eds) G. Braun, Karlsruhe, p 268Google Scholar
  102. 102.
    Zyskowski W (1975) Thermal interaction of molten copper with water, Int. J. of Heat and Mass Transfer, vol 18 pp 271–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations