Liquid and gas jet disintegration


Froud Number Weber Number Ohnesorge Number Varicose Mode Surface Entrainment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor GK (ed) (1958) Collected works of Taylor GI, Cambridge Univ. Press, Cambridge, MAGoogle Scholar
  2. 2.
    Bohr N (1909) Determination of the surface-tension of water by method of jet vibration, Phil. Trans. Roy. Soc. London, Series A., vol 209 p 281Google Scholar
  3. 3.
    Bracco FV (Feb. 25–March 1, 1985) Modeling of engine sprays, Proc. International Congress & Exposition Detroit, Michigan, pp 113–136Google Scholar
  4. 4.
    Buerger M, von Berg E, Cho SH, Schatz A, (October 25–29, 1993) Modeling of jet breakup as a key process in premixing, Proc. of the Int. Seminar on The Physics of Vapor Explosions, Tomakomai, pp 79–89Google Scholar
  5. 5.
    Chawla TC (1975) The Kelvin-Helmholtz instability of gas-liquid interface, J. Fluid Mechanics, vol 67 no 3 pp 513–537Google Scholar
  6. 6.
    Chawla TC (1976) Drop size resulting from breakup of liquid-gas interfaces of liquid submerged subsonic and sonic gas jets, Int. J. Multiphase Flow, pp 471–475Google Scholar
  7. 7.
    Darton RC, La Nauze RD, Davidson JF and Harrison D (1977) Bubble growth due to coalescence in fluidized beds, Trans. I. Chem. E., vol 55 pp 274–280Google Scholar
  8. 8.
    Davidson JF and Harrison D (1963) Fluidized particles, Cambridge University Press, LondonGoogle Scholar
  9. 9.
    De Jarlais G, Ishii M and Linehan J (Febr. 1986) Hydrodynamic stability of inverted annular flow in an adiabatic simulation, Transactions of ASME, Journal of Heat Transfer, vol 108 pp 85–92Google Scholar
  10. 10.
    Epstein M and Fauske K (August 4–7, 1985) Steam film instability and the mixing of core-melt jets and water, ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, pp 277–284Google Scholar
  11. 11.
    Faeth GM (April 3–7, 1995) Spray combustion: a review, Proc. of The 2nd International Conference on Multiphase Flow, Kyoto, JapanGoogle Scholar
  12. 12.
    Fenn III RW and Middleman S, Newtonian jet stability: The role of air resistance, AIChE Journal, vol 15 no 3 pp 379–383Google Scholar
  13. 13.
    Fritz W and Ende W (1966) Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Phys. Z., vol 37 pp 391–401Google Scholar
  14. 14.
    Geary NW and Rice RG (Feb. 1991) Bubble size prediction for rigid and flexible sparkers, AIChE Journal, vol 37 no 2 pp 161–168CrossRefGoogle Scholar
  15. 15.
    Grant RP and Middleman S (July 1966) Newton Jet Stability, AIChEJ, vol 12 no 4 p 669CrossRefGoogle Scholar
  16. 16.
    Rayleigh L (1878) On the instability of jets, Proc. London Math. Soc., vol 10 p 7Google Scholar
  17. 17.
    Iciek J (1982) The hydrodynamics of free, liquid jet and their influence on direct contact heat transfer-I, II, Int. J. Multiphase Flow, vol 8 no 3 pp 239–260CrossRefGoogle Scholar
  18. 18.
    Kutateladze SS and Styrikovich MA (1958) Hydraulics of gas-liquid systems, Moscow, Wright Field transl. F-TS-9814/VGoogle Scholar
  19. 19.
    Lienhard JH and Day JB (1970) The breakup of superheated liquid Jets, ASME J. Basic Eng., vol 92 pp 511–522Google Scholar
  20. 20.
    Mayer E (Dec. 1961) Theory of liquid atomization in high velocity gas streams, ARS Journal, vol 31 pp 1787–1785Google Scholar
  21. 21.
    Meister BJ and Scheele GF (1969) AIChEJ vol 15 pp 689–699CrossRefGoogle Scholar
  22. 22.
    Merrington AC and Richardson EG (1947) The breakup of liquids jets, Proc. Phys. Soc., vol 59 pp 1–13CrossRefGoogle Scholar
  23. 23.
    Nigmatulin BI, Melikhov OI, and Melikhov VI (Oct.25–29, 1993) Breakup of liquid jets in film boiling, Proc. of Int. Sem. on The Physics of Vapor Explosions, Tomakomi, pp 90–95Google Scholar
  24. 24.
    Ohnesorge W (1936) Die Bildung von Tröpfen an Düsen und die Auflüssiger Strahlen, Z. Angew. Math. Mech., vol 16 pp 335–359Google Scholar
  25. 25.
    Ruft K (1972) Bildung von Gasblasen an Düsen bei konstantem Volumendurchsatz, Chemie-Ing. Techn. vol 44 no 24 pp 1360–1366CrossRefGoogle Scholar
  26. 26.
    Saito M, Sato K and Imahori S (July 24–July 27, 1988) Experimental studi on penetration of water jet into Freon-11 and Liquid Nitrogen, ANS Proc. 1988 Nat. Heat Transfer Conference., HTS-Vol.3, Houston, Texas, pp 173–183Google Scholar
  27. 27.
    Schneider JP, Marchiniak MJ, Jones BG (Sept. 21–24, 1992) Breakup of metal jets penetrating a volatile liquid, Proc. of the Fifth Int. Top. Meeting On Reactor Thermal Hydraulics NURETH-5, vol 2 pp 437–449Google Scholar
  28. 28.
    Smith SWJ and Moss H (1917) Experiments with mercury jets, Proc. Roz. Soc., vol A/93 pp 373–393Google Scholar
  29. 29.
    Sun PH (November 4–6, 1998) Molten fuel-coolant interactions induced by coolant injection into molten fuel, SARJ98: The Workshop on Severe Accident Research held in Japan Tokio, JapanGoogle Scholar
  30. 30.
    Takahashi T and Kitamura Y (1971) Kogaku Kogaku, vol 35 p 637Google Scholar
  31. 31.
    Takahashi T and Kitamura Y (1972) Kogaku Kogaku, vol 36 p 912Google Scholar
  32. 32.
    Tanzawa Y and Toyoda S (1954) Trans. J.S.M.E. vol 20 p 306Google Scholar
  33. 33.
    Teng H, Kinoshita CM and Masutani SM (1995) Prediction of droplet size from the breackup of cylindrical liquid jet, Int. J. Multiphase Flows, vol 21 no 1 pp 129–136CrossRefGoogle Scholar
  34. 34.
    Thimotika H (1935) Proc. Roy. Soc., vol.150 p 322: (1936) vol 153 p 302Google Scholar
  35. 35.
    Weber C (1936) Zum Zerfall eines Flüssigketsstrahles, Z. Angew. Math. Mech., vol 11 pp 136–154Google Scholar
  36. 36.
    Wolfe HE and Anderson WH (1965) Aerodynamic breakup of liquid drops, II. Experimental, Proc. Int. Shock Tube Symposium, Naval Ordinance Lab. White Oak, Maryland, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations