Advertisement

Detonation waves caused by chemical reactions or by melt-coolant interactions

Keywords

Shock Wave Detonation Wave Uranium Dioxide Detonation Front Detonation Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthoud G (March 1999) Heat transfer modeling during a thermal detonation, CEA/Grenoble Report no SMTH/LM2/99-37Google Scholar
  2. 2.
    Board SJ, Hall RW, Hall RS (1975) Detonation of fuel coolant explosions, Nature 254, March 27, pp 319–321Google Scholar
  3. 3.
    Chapman DL (1899) Philos. Mag., vol 47 no 5 p 90Google Scholar
  4. 4.
    Crussard L (1907) Bull. De la Soc. De l’industrie Minérale St.-Etienne, vol 6 pp 1–109Google Scholar
  5. 5.
    Fischer M (1967) Zur Dynamik der Wellenausbreitung in den Zweiphasenströmungen unter Berücksichtigung von Verdichtungsstössen, Dissertation, TH KarlsruheGoogle Scholar
  6. 6.
    Frost DL, Lee JHS, Ciccarelli (1991) The use of Hugoniot analysis for the propagation of vapor explosion waves, Shock Waves, Springer, Berlin Heidelberg New York, pp 99–110Google Scholar
  7. 7.
    Henry RE, Fauske HK (August 1981) Core melt progression and the attainment of a permanently coolable state, in Proc. of the ANS Topical Meeting on Reactor Safety Aspects of Fuel Behavior, San Valley, Idaho. American Nuclear SocietyGoogle Scholar
  8. 8.
    Henry RE, Fauske HK (1981) Required initial conditions for energetic steam explosions, J. Heat Transfer, vol 19 pp 99–107Google Scholar
  9. 9.
    Hugoniot PH (1887) Mémoire sur la propagation du mouvement dans les corps et spécialement dans les gazes parfaits, Journal de l’École PolytechniqueGoogle Scholar
  10. 10.
    Huhtiniemi I, Magalon D, Hohmann H (1997) Results of recent KROTOS FCI tests: alumna vs. corium melts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan 19–21 MayGoogle Scholar
  11. 11.
    Jouguet E (1905) J. Mathématique, p 347; (1906) p 6; (1917) Mécanique des Explosifs, Doin O, ParisGoogle Scholar
  12. 12.
    Kolev NI (1999) In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 1: Choice of the solution method, Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 October, 1999, Log. No. 316_1Google Scholar
  13. 13.
    Kolev NI (1999) In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 2: Analysis, Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 October, 1999, Log. No. 316_2Google Scholar
  14. 14.
    Kolev N I (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence — alumna experiments, Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 OctoberGoogle Scholar
  15. 15.
    Kolev NI (2000) Detonation waves in melt-coolant interaction, Part 1: Theory, EU Nr. INV-MFCI(99)-D038, Kerntechnik, vol 65 no 5–6 pp 254–260Google Scholar
  16. 16.
    Kolev NI and Hulin H (2001) Detonation waves in melt-coolant interaction, Part.2: Aplied analysis, MFCI Project, 6th progress meeting, CEA, Grenoble, 23–24 June 1999. EU Nr. INV-MFCI(99)-D038. Kerntechnik, vol 66 no 1–2 pp 21–25Google Scholar
  17. 17.
    Landau L, Lifshitz EM (1953) Hydrodynamics, Nauka i izkustwo, Sofia 1978 (in Bulgarian), translated from Russian: Theoretical physics: Continuum mechanics and hydrodynamics, Technikoistorizeskoy literatury, MoscuGoogle Scholar
  18. 18.
    Laplace PSM (1816) Sur la vitesse du son dans l’air at dan l’eau, Annales de Chimie et de PhysiqueGoogle Scholar
  19. 19.
    Park GC, Corradini ML (July 1991) Estimates of limits for fuel-coolant mixing, in AIChE Proc. of the National Heat Transfer Conference, MinneapolisGoogle Scholar
  20. 20.
    Rankine WJM (1870) On the thermodynamic theory of waves of finite longitudinal disturbances, Philosophical Transactions of the Royal SocietyGoogle Scholar
  21. 21.
    Rayleigh L (Sept. 15 1910) Aerial plane waves of finite amplitude, Proc. of the Royal SocietyGoogle Scholar
  22. 22.
    Robert JK, Rupley and Miller JA (April 1987) The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358Google Scholar
  23. 23.
    Scott EF, Berthoud GJ (Dec. 10–15 1978) Multi-phase thermal detonation, Topics in two-phase heat transfer and flow, pp 11–16, ASME Winter annual meeting, San FranciscoGoogle Scholar
  24. 24.
    Shamoun BI, Corradini ML (1995) Analysis of supercritical vapor explosions using thermal detonation wave theory, Proceedings of the seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7) pp 1634–1652Google Scholar
  25. 25.
    Shamoun BI, Corradini ML (July 1996) Analytical study of subcritical vapor explosions using thermal detonation wave theory, Nuclear Technology, vol 115, pp 35–45Google Scholar
  26. 26.
    Taylor G I (Oct. 1910) The condition necessary for discontinuous motion in gases, Proc. of the Royal SocietyGoogle Scholar
  27. 27.
    Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Wood B (1930) Textbook of sound, Macmillan, New York, p 327Google Scholar
  29. 29.
    Yuen WW, Theofanous TG (19th–21st May 1997) On the existence of multi-phase thermal detonation, Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, JapanGoogle Scholar
  30. 30.
    Zeldovich JB (1940) To the theory of detonation propagation in gas systems, Journal of experimental and theoretical physics, vol 10 no 5 pp 542–568Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations