Some simple applications of the mass and energy conservation


Simple Application Inert Component Hydrogen Combustion Closed Volume Fuel Equivalence Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlmä F (1975) Gasdynamik der Verbrennung, Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Belles FE (28 August–3 September, 1958) Detonability and chemical kinetics: Prediction of the limits of detonability of hydrogen, Seventh Symposium (international) on combustion, At London and Oxford, pp 745–751Google Scholar
  3. 3.
    Bertelot M and Vieille P (1881) Compt. Rend. Acad. Sci. Paris, vol 93 p. 18Google Scholar
  4. 4.
    Bröckerhoff P, Kugeler K, Reinecke A-E, Tragsdorf IM (4.4.2002) Untersuchungen zur weiteren Verbesserung der Methoden zur sicherheitstechnischen Bewertung der katalytischen Rekombinatoren von Wasserstoff in Sicherheitsbehältern von Kernkraftwerken bei schweren Störfällen, Institut flür Sicherheitsforschung und Reaktortechnik (IRS-2), Forschungszentrum JülichGoogle Scholar
  5. 5.
    Chapman DL (1899) Philos. Mag., vol 47 no 5 p 90Google Scholar
  6. 6.
    Chase MW ed (1998) NIST-JANAF Thermochemical Tables, 4th ed Part I, II, American Institute of Physics and American Chemical Society, Woodbury, New YorkGoogle Scholar
  7. 7.
    Cox RA (ed) (1989) Kinetics and mechanisms of elementary chemical processes of importance in combustion: Research within the frame of the CEC non-nuclear energy R&D program; Final report of the period 1.4.1986 to 30.6.1989, Engineering Science Division, Harwell Laboratory, Didcot/UKGoogle Scholar
  8. 8.
    Crussard L (1907) Bull. De la Soc. De l’industrie Minérale St.-Etienne, vol 6 pp 1–109Google Scholar
  9. 9.
    Dorsey NE (November 1951) Properties of ordinary water-substance, Reihold, 1940, Second PrintingGoogle Scholar
  10. 10.
    Gaydon A and Wolfhard H (1979) Flames, their structure, radiation, and temperature. Chapman and Hall, LondonGoogle Scholar
  11. 11.
    Ihara S (1977) Approximation for the thermodynamic properties of high-temperature dissociated water vapour, Bulletin of the Electrotechnical Laboratory, Tokyo, Japan vol 41 no 4 pp 259–280Google Scholar
  12. 12.
    Ihara S (1979) Direct thermal decomposition of water, Solar-Hydrogen Energy Systems, Ch 4, ed Ohta T, Pergamon, Oxford, pp 58–79Google Scholar
  13. 13.
    Isserlin AS (1987) Osnovy zzhiganija gazovogo topliva, Nedra, LeningradGoogle Scholar
  14. 14.
    Jouguet E (1905) J. Mathématique, p 347; (1906) p 6; (1917) Mécanique des Explosifs, Doin O, ParisGoogle Scholar
  15. 15.
    Kesselman PM, Blank JuI and Mogilevskij (1968) Thermodynamical properties of thermally dissociated water steam for temperatures 1600–6000K and pressures 0.1–1000bar, High temperature physics, vol 6 no 4, in RussianGoogle Scholar
  16. 16.
    Kolarov NCh (1970) Inorganic Chemistry, Sofia, Technika, in BulgarianGoogle Scholar
  17. 17.
    Kuo KK (1986) Principles of Combustion, Wiley-Intersience PublicationGoogle Scholar
  18. 18.
    Laffitte PF (1938) Flames of high-speed detonation, Science of Petrolium, Oxford University Press, London, pp 2995–3003Google Scholar
  19. 19.
    Landau LD, Lifshitz EM (1987) Course of theoretical physics, vol 6, Fluid Mechanics, Second Edition, Pergamon, OxfordGoogle Scholar
  20. 20.
    Lewis B and Friauf JB (1930) Explosives in detonating gas mixtures. 1. Calculation of rates of explosions in mixtures of hydrogen and oxigen and the influence of rare gases. J. Amer. Chem. Soc. LII pp 3905–3929CrossRefGoogle Scholar
  21. 21.
    Lewis B and von Elbe G (1987) Combustion, flames and explosion of gases, Academic Press, Harcourt Brace Jovanovich, OrlandoGoogle Scholar
  22. 22.
    Maas U and Wanatz J (1988) Ignition process in hydrogen-oxygen mixtures, Comb. Flame vol 74 pp 53–69CrossRefGoogle Scholar
  23. 23.
    Mallard E and Le Chatelier HL (1881) Compt. Rend. Acad. Sci. Paris, vol 93 p. 145Google Scholar
  24. 24.
    Moser V (6.2.1997) Simulation der Explosion magerer Wasserstoff-Luft-Gemische in großskaligen Geometrien, PhD, Achener Beiträge zum Kraftahr-und Maschinenwesen, Band 11Google Scholar
  25. 25.
    Oswatitsch K (1952) Gasdynamik, Springer-Verlag, ViennaGoogle Scholar
  26. 26.
    Robert JK, Rupley and Miller JA (April 1987) The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358Google Scholar
  27. 27.
    Schmidt E (1945) Thermodynamik, 3. Aufl., Springer-Verlag, Vienna, p. 272Google Scholar
  28. 28.
    Tangren RF, Dodge CH, Seifert HS (1949) Compressibility effects in two-phase flow, Journal of Applied Physics, vol 20 p 736CrossRefGoogle Scholar
  29. 29.
    Taylor GI (1935) Proc. Roy. Soc. London Ser. A, vol 151 p 429Google Scholar
  30. 30.
    Vargaftik NB (1983) Handbook of physical properties of liquids and gases: pure substances and mixtures, The English translation of the second edition, Hemisphere Publishing CorporationGoogle Scholar
  31. 31.
    Vasic AZ (1993) High temperature properties and heat transfer phenomena for steam at temperatures up to 5000K, MS Thesis, Ottawa-Carleton Institute for Mechanical and Aeronautical Engineering, Ottawa, OntarioGoogle Scholar
  32. 32.
    Wendlandt R (1924) Z. für phys. Chemie, vol. 110, pp. 637Google Scholar
  33. 33.
    Zeldovich JB (1940) To the theory of detonation propagation in gas systems, Journal of experimental and theoretical physics, vol 10 no 5 pp 542–568Google Scholar
  34. 34.
    Zwerev IN, Smirnov NN (1987) Gasodinamika gorenija, Izdatelstvo Moskovskogo universitetaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations