First and second laws of the thermodynamics


Velocity Field Versus Versus Versus Versus Versus Versus Versus Versus Versus Versus Versus Versus Mass Conservation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bird BR, Stewart WE, Lightfoot E N (1960) Transport Phenomena, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, SingaporeGoogle Scholar
  2. 2.
    Bohl WR et al (1988) Multiphase flow in the advanced fluid dynamics model, ANS Proc. 1988 Nat. Heat Transfer Conf., HTC-vol 3 July 24–27, Houston, Texas, pp 61–70Google Scholar
  3. 3.
    Fick A (1855) Über Diffusion. Ann. der Physik, vol 94 p 59Google Scholar
  4. 4.
    Grigorieva VA, Zorina VM, eds. (1988) Handbook of thermal engineering, thermal engineering experiment, in Russian, 2d Edition, Moskva, Atomisdat, vol 2Google Scholar
  5. 5.
    Hammond GP (Nov. 1985) Turbulent Prandtl number within a near-wall flow, AIAA Journal, vol 23 no 11 pp 1668–1669Google Scholar
  6. 6.
    Kelly JM, Kohrt R J (1983) COBRA-TF: Flow blockage heat transfer program. Proc. Eleventh Water Reactor Safety Research Information Meeting (Oct. 24–28 1983) Gaithersbury — Maryland, NUREG/CP-0048, vol 1 pp 209–232Google Scholar
  7. 7.
    Kolev NI (March 1985) Transiente Drephasen Dreikomponenten Stroemung, Teil 1: Formulierung des Differentialgleichungssystems, KfK 3910Google Scholar
  8. 8.
    Kolev NI (1986) Transient three-dimensional three-phase three-component nonequilibrium flow in porous bodies described by three-velocity fields, Kernenergie, vol 29 no 10 pp 383–392Google Scholar
  9. 9.
    Kolev NI (1986) Transiente Dreiphasen Dreikomponenten Stroemung, Part 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080Google Scholar
  10. 10.
    Kolev NI (August 1987) A Three Field-Diffusion Model of Three-Phase, Three-Component Flow for the Transient 3D-Computer Code IVA2/01, Nuclear Technology, vol 78 pp 95–131Google Scholar
  11. 11.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics. KfK 4948 Kernforschungszentrum KarlsruheGoogle Scholar
  12. 12.
    Kolev NI (1991) IVA3: A transient 3D three-phase, three-component flow analyzer, Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21–25, 1991, pp 171–180. The same paper was presented at the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal-Hydraulics, Kemfor-schungszentrum Karlsruhe, August 27 to 29, 1991Google Scholar
  13. 13.
    Kolev NI (1993) Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasser-kühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002Google Scholar
  14. 14.
    Kolev NI (1993) IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041Google Scholar
  15. 15.
    Kolev NI (1993) IVA3-NW components: Relief valves, pumps, heat structures, Siemens KWU Report R232/93/E0050.Google Scholar
  16. 16.
    Kolev NI (1993) The code IVA3 for modelling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156Google Scholar
  17. 17.
    Kolev NI (1993) IVA3 NW: Computer code for modelling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Oct. 5–8, 1993, Grenoble, FranceGoogle Scholar
  18. 18.
    Kolev NI (1994) IVA4: Modelling of mass conservation in multi-phase multi-component flows in heterogeneous porous media, Siemens KWU Report NA-M/94/E029, July 5, 1994 also in Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  19. 19.
    Kolev NI (1994) IVA4: Modelling of momentum conservation in multi-phase flows in heterogeneous porous media, Siemens KWU Report NA-M/94/E030, July 5, 1994, also in Kerntechnik, vol 59 no 6 pp 249–258Google Scholar
  20. 20.
    Kolev NI (1994) The influence of the mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, vol 8 pp 167–174CrossRefGoogle Scholar
  21. 21.
    Kolev NI (1996) Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16Google Scholar
  22. 22.
    Kolev NI (1991) Derivatives for the equation of state of multi-component mixtures for universal multi-component flow models, Nuclear Science and Engineering: vol 108 pp 74–87Google Scholar
  23. 23.
    Kolev NI (1995), The code IVA4: Second law of thermodynamics for multi-phase multi-component flows in heterogeneous media, Kerntechnik, vol 60 no 1, pp 1–39Google Scholar
  24. 24.
    Kolev NI (1997) Comments on the entropy concept, Kerntechnik, vol 62 no 1 pp 67–70Google Scholar
  25. 25.
    Kolev NI (1997) Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirenments, Annapoliss, Md, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, JapanGoogle Scholar
  26. 26.
    Kolev NI (1998) On the variety of notation of the energy conservation principle for single phase flow, Kerntechnik, vol 63 no 3 pp 145–156Google Scholar
  27. 27.
    Kolev NI (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence — alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, Log. Nr. 315.Google Scholar
  28. 28.
    Liles DR et al (June 1978) TRAC-P1: An advanced best estimate computer program for PWR LOCA analysis. I. Methods, Models, User Information and Programming Details, NUREG/CR-0063, LA-7279-MS vol 1Google Scholar
  29. 29.
    Liles DR et al (April 1981) TRAC-FD2 An advanced best-estimate computer program for pressurized water ractor loss-of-coolant accident analysis. NUREG/CR-2054, LA-8709 MSGoogle Scholar
  30. 30.
    Reid RC, Prausnitz JM, Sherwood TK (1982) The Properties of Gases and Liquids, Third Edition, McGraw-Hill Book Company, New YorkGoogle Scholar
  31. 31.
    Sha T, Chao BT, Soo SL (1984) Porous media formulation for multi phase flow with heat transfer, Nuclear Engineering and Design, vol 82 pp 93–106CrossRefGoogle Scholar
  32. 32.
    Taylor GI (1935) Proc. Roy. Soc. A, vol 151 p 429Google Scholar
  33. 33.
    Thurgood MJ et al (1983) COBRA/TRAC — A thermal hydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems. NUREG/CR-346, vol 1–5Google Scholar
  34. 34.
    Zierep J (1983) Einige moderne Aspekte der Stroemungsmechanik, Zeitschrift fuer Flugwissenschaften und Weltraumforschung, vol 7 no 6 pp 357–361Google Scholar
  35. 35.
    Solbrig CW, Hocever CH and Huges ED (14–17 August 1977) A model for a heterogeneous two-phase unequal temperature fluid, 17th National heat transfer conference, Salt Lake Sity, Utah, pp 139–151Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations