Advertisement

On the variety of notations of the energy conservation for single-phase flow

Keywords

Energy Conservation Control Volume Shock Tube Energy Conservation Equation Mass Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boltzman L (1909) Wissenschaftliche Abhandlungen. Bd. 1. LeipzigGoogle Scholar
  2. 2.
    Clausius R (1854) Ann. Phys., vol 125 p 390 (1868) Phil. Mag., vol 35 p 419 (1875) Die mechanische Wärmetheorie, Bonn, vol 1Google Scholar
  3. 3.
    D’Alembert (1743) Traitè de dynamiqueGoogle Scholar
  4. 4.
    Elsner N (1974) Grundlagen der Thechnischen Thermodynamik, Akademie Verlag, Berlin, p 86Google Scholar
  5. 5.
    Gibbs W (1878) Thermodynamics. Statistical mechanicsGoogle Scholar
  6. 6.
    Gibbs JW (1992) Thermodynamische Studien, translated in German by W. Ostwald in 1892, Leipzig, Verlag von Wilchelm Engelmann, p 76Google Scholar
  7. 7.
    Hoffmann KA and Chang ST (2000) Computational fluid dynamics, vol 2, A Publication of Engineering Education System, Wichita, KansassGoogle Scholar
  8. 8.
    Kolev NI, Kemtechnik, vol 59 no 4–5 pp 226–237, no.6 pp 249–258, vol 60 no 1 pp 1–39, vol 62 no 1 pp 67–70, Nuclear Science and Engineering, vol 108 pp 74–87Google Scholar
  9. 9.
    Kolev NI, Nuclear Science and Engineering, vol 108 pp 74–87Google Scholar
  10. 10.
    Kolev NI (1996) Three Fluid Modeling With Dynamic Fragmentation and Coalescence Fiction or Daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16, 1996; Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, Md, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermody-namics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan.Google Scholar
  11. 11.
    Kolev NI (1997) An pretest computation of FARO-FAT L27 experiment with IVA5 computer code, 8th FARO Expert Group Meeting, 9–10 december 1997, JRC-IspraGoogle Scholar
  12. 12.
    Kolev NI (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, Log. Nr. 315.Google Scholar
  13. 13.
    Oertel H (1966) Stossrohre, Springer Verlag, Wien-New YorkGoogle Scholar
  14. 14.
    Oswatitsch K (1952) Gasdynamik, Wien, SpringerGoogle Scholar
  15. 15.
    Newton I (1872) Matematische Prinzipien der Naturlehre, BerlinGoogle Scholar
  16. 16.
    Plank M (1964) Vorlesungen über Thermodynamic. 11. Aufl. S.91, Verlag Walter de Gruyter&Co., BerlinGoogle Scholar
  17. 17.
    Reynolds WC, Perkins HC (1977) Engineering Thermodynamics, Second Edition, McGraw-Hill, p 266Google Scholar
  18. 18.
    Riemann B (1858–1859) Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Band 8, S 43–65Google Scholar
  19. 19.
    Stokes GG (1845) On the theories of the internal friction of fluids in motion and the equilibrium and motion of elastic solids, Trans. Cambr. Phil. Soc., vol 8 pp 287–305Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations