Advertisement

Derivatives for the equations of state

Keywords

Miscible Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chase MW ed (1998) NIST-JANAF Thermochemical Tables, 4th ed Part I, II, American Institute of Physics and American Chemical Society, Woodbury, New YorkGoogle Scholar
  2. 2.
    Chawla TC et al (1981) Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis, Nuclear Engineering and Design, vol 67 pp 57–74CrossRefGoogle Scholar
  3. 3.
    Cordfunke EHP, Konings RJM, Eds (1990) Thermo-chemical data for reactor materials and fission products, North-Holland, AmsterdamGoogle Scholar
  4. 4.
    Elsner N (1974) Grundlagen der Technischen Thermodynamik, 2. Berichtete Auflage, Akademie-Verlag, BerlinGoogle Scholar
  5. 5.
    Fink JK, Ghasanov MG, Leibowitz L (May 1982) Properties for reactor safety analysis, ANL-CEN-RSD-82-2Google Scholar
  6. 6.
    Fischer EA (1990) Kernforschungszentrum Karlsruhe GmbH, unpublished report.Google Scholar
  7. 7.
    Garland WJ, Hand BJ (1989) Simple functions for the fast approximation of light water thermodynamic properties, Nuclear Engineering and Design, vol 113 pp 21–34CrossRefGoogle Scholar
  8. 8.
    Hill PG, Miyagawa K (April 1997) A tabular Taylor series expansion method for fast calculation of steam properties, Transaction of ASME, Journal of Engineering for Gas Turbines and Power, vol 119 pp 485–491Google Scholar
  9. 9.
    Irvine TF, Liley PE (1984) Steam and gas tables with computer equations, Academic Press, New YorkGoogle Scholar
  10. 10.
    Issa RI (1983) Numerical methods for two-and three-dimensional recirculating flows, in Comp. Methods for Turbulent Transonic and Viscous Flow, Ed. J. A. Essers, Hemisphere, Washington, and Springer, Berlin Heidelberg New York, pp 183Google Scholar
  11. 11.
    Kestin J (1979) A course in thermodynamics, vol 1, Hemisphere, WashingtonGoogle Scholar
  12. 12.
    Kolev NI (1986) Transient three phase three component non-equilibrium non-homogeneous flow, Nuclear Engineering and Design, vol 91 pp 373–390CrossRefGoogle Scholar
  13. 13.
    Kolev NI (1986) Transiente Zweiphasenstromung, Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 2: Models for interfacial transport phenomena. Code validation, Kernforschungszentrum Karlsruhe, KfK 4949Google Scholar
  15. 15.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics, Kernforschungszentrum Karlsruhe, KfK 4948Google Scholar
  16. 16.
    Kolev NI (Sept. 1991) IVA3: Computer code for modeling of transient three dimensional three phase flow in complicated geometry, Program documentation: Input description, KfK 4950, Kernforschungszentrum KarlsruheGoogle Scholar
  17. 17.
    Kolev NI (1991) Derivatives for equations of state of multi-component mixtures for universal multi-component flow models, Nuclear Science and Engineering, vol 108 no 1 pp 74–87Google Scholar
  18. 18.
    Kolev NI (1994) The code IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  19. 19.
    Kolev NI (1994) The code IVA4: Modeling of momentum conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 6 pp 249–258Google Scholar
  20. 20.
    Kolev NI (1995) The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media, Kemtechnik, vol 60 no 1 pp 1–39Google Scholar
  21. 21.
    Kolev NI (1996) Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16, 1996; Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, MD, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermody-namics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, JapanGoogle Scholar
  22. 22.
    Kolev NI (1998) On the variety of notation of the energy conservation principle for single phase flow, Kemtechnik, vol 63 no 3 pp 145–156Google Scholar
  23. 23.
    Kolev NI (October 3–8, 1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CaliforniaGoogle Scholar
  24. 24.
    Kolev NI (2002) Multi-Phase Flow Dynamics, Vol. 1 Fundamentals + CD, Springer, Berlin, New York, Tokyo, ISBN 3-540-42984-0Google Scholar
  25. 25.
    Liles DR et al (1981) TRAC-PD2 An advanced best-estimate computer program for pressurized water reactor loss-of-coolant accident analysis, NUREG/CR-2054, LA-7709-MSGoogle Scholar
  26. 26.
    McCahan S, Shepherd JE (January 1993) A thermodynamic model for aluminum-water interaction, Proc. Of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127Google Scholar
  27. 27.
    Meyer-Pittroff R, Vesper H, Grigul U (May 1969) Einige Umkehrfunktionen und Näherungsgleichungen zur “1967 IFC Formulation for Industrial Use” flür Wasser und Wasserdampf, Brennst.-Wärme-Kraft, vol 21 no 5 pp 239Google Scholar
  28. 28.
    Reid RC, Prausnitz JM, Scherwood TK (1982) The properties of gases and liquids, third edition, McGraw-Hill Book Company, New YorkGoogle Scholar
  29. 29.
    Rivkin SL, Alexandrov AA (1975) Thermodynamic properties of water and steam, Energia, Moscow, in RussianGoogle Scholar
  30. 30.
    Rivkin SL, Kremnevskaya EA (1977) Equations of state of water and steam for computer calculations for process and equipment at power stations, Teploenergetika vol 24 no 3 pp 69–73 (in Russian)Google Scholar
  31. 31.
    Sesternhenn J, Müller B, Thomann H (1999) On the calculation problem in calculating compressible low mach number flows, Journal of Computational Physics, vol 151 pp 579–615Google Scholar
  32. 32.
    Skripov VP et al (1980) Thermophysical properties of liquids in meta-stable state, Atomisdat, Moscow, in RussianGoogle Scholar
  33. 33.
    Touloukian YS, Makita T (1970) Specific heat, non-metallic liquids and gases, IFC/Plenum, New York, vol 6Google Scholar
  34. 34.
    Vargaftik NB, Vonogradov YK and Yargin VS (1996) Handbook of physical properties of liquid and gases, 3d ed., Begell House, New York, Wallingford (UK)Google Scholar
  35. 35.
    Wagner W et al (2000) The IAPS industrial formulation 1997 for the thermodynamic properties of water and steam, Transaction of ASME, Journal of Engineering for Gas Turbines and Power, vol 122 pp 150–182. See also Wagner W and Kruse A (1998) Properties of water and steam, Springer, Berlin HeidelbergCrossRefGoogle Scholar
  36. 36.
    Warnatz J, Maas U, Dibble RW (2001) Combustion, 3th Edition, Springer, Berlin Heidelberg New YorkGoogle Scholar
  37. 37.
    Wilke CR (1950) J. Chem. Phys., vol 18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations