Advertisement

Momentums conservation

Keywords

Versus Versus Versus Multiphase Flow Momentum Conservation Versus Versus Versus Versus Versus Versus Versus Versus Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds, Ind. Eng. Fundam., vol 6 pp 527Google Scholar
  2. 2.
    Bamea D, Taitel Y (1994) Interfacial and structural stability, Int. J. Multiphase Flow, vol 20Suppl pp 387–414CrossRefGoogle Scholar
  3. 3.
    Bataille J, Lance M, Marie JL (1990) Bubble turbulent shear flows, ASME Winter Annular Meeting, Dallas, Nov. 1990Google Scholar
  4. 4.
    Bememann K, Steiff A, Weinspach PM (1991) Zum Einfluss von längsangeströmten Rohrbündeln auf die großräumige Flüssigkeitsströmung in Blasensäulen, Chem. Ing. Tech., vol 63 no 1 pp 76–77CrossRefGoogle Scholar
  5. 5.
    Biesheuvel A, van Wijngaarden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid, J. Fluid Mechanics, 168 pp 301–318Google Scholar
  6. 6.
    Biesheuvel A, Spollstra S (1989) The added mass coefficient of dispersion of gas bubbles in liquid, Int. J. Multiphase Flow, no. 15 pp 911–924CrossRefGoogle Scholar
  7. 7.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension, Journal of Computational Physics, vol 100 pp 335–354CrossRefGoogle Scholar
  8. 8.
    Brauner N, Maron DM (1992) Stability analysis of stratified liquid-liquid flow, Int. J. Multiphase Flow, vol 18 no 1 pp 103–121CrossRefGoogle Scholar
  9. 9.
    Cook TL, Harlow FH (1983) VORT: A computer code for bubble two-phase flow. Los Alamos National Laboratory documents LA-10021-MSGoogle Scholar
  10. 10.
    Cook TL, Harlow FH (1984) Virtual mass in multi-phase flow, Int. J. Multiphase Flow, vol. 10 no 6 pp 691–696CrossRefGoogle Scholar
  11. 11.
    de Crecy F (1986) Modeling of stratified two-phase flow in pipes, pumps and other devices, Int. J. Multiphase Flow, vol 12 no 3 pp 307–323CrossRefGoogle Scholar
  12. 12.
    Deich ME, Philipoff GA (1981) Gas dynamics of two phase flows, Energoisdat, MoskvaGoogle Scholar
  13. 13.
    Delhaye JM (1981) Basic equations for two-phase flow, in Bergles AE et al (eds) Two-phase flow and heat transfer in power and process industries, Hemisphere Publishing Corporation, McGraw-Hill Book Company, New YorkGoogle Scholar
  14. 14.
    Delhaye JM, Giot M, Riethmuller ML (1981) Thermohydraulics of two-phase systems for industrial design and nuclear engineering, Hemisphere Publishing Corporation, New York, McGraw Hill Book Company, New YorkGoogle Scholar
  15. 15.
    Drazin PG, Reid WH (1981) Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  16. 16.
    Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining flow, Int. J. Multiphase Flow, vol. 13 no 1, pp 113–121CrossRefGoogle Scholar
  17. 17.
    Erichhom R, Small S (1969) Experiments on the lift and drag of spheres suspended in a poiseuille flow, J. Fluid Mech., vol 20–3 pp 513Google Scholar
  18. 18.
    Gray WG, Lee PCY (1977) On the theorems for local volume averaging of multi-phase system, Int. J. Multi-Phase Flow, vol 3 pp 222–340Google Scholar
  19. 19.
    Hetstrony G (1982) Handbook of multi-phase systems. Hemisphere Publ. Corp., Washington et al., McGraw-Hill Book Company, New York et al.Google Scholar
  20. 20.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for dynamics of free boundaries, J. of Comp. Physics, vol 39 p 201–225CrossRefGoogle Scholar
  21. 21.
    Ho BP, Leal LG (1976) Intemal migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech., vol 78 no 2 p 385Google Scholar
  22. 22.
    Hwang GJ, Schen HH (Sept. 21–24, 1992) Tensorial solid phase pressure from hydrodynamic interaction in fluid-solid flows. Proc. of the Fifth International Topical Meeting On Reactor Thermal Hydraulics, NURETH-5, Salt Lake City, UT, USA, IV pp 966–971Google Scholar
  23. 23.
    Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow, Eyrolles, ParisGoogle Scholar
  24. 24.
    Ishii M, Michima K (1984) Two-fluid model and hydrodynamic constitutive relations, NSE 82 pp 107–126Google Scholar
  25. 25.
    Kolev NI (March 1985) Transiente Dreiphasen-Dreikomponenten Strömung, Teil 1: Formulierung des Differentialgleichungssystems, KfK 3910Google Scholar
  26. 26.
    Kolev NI (1986) Transiente Dreiphasen-Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080Google Scholar
  27. 27.
    Kolev NI (1986) Transient three-dimensional three-phase three-component non equilibrium flow in porous bodies described by three-velocity fields, Kernenergie vol 29 no 10 pp 383–392Google Scholar
  28. 28.
    Kolev NI (Aug. 1987), A three field-diffusion model of three-phase, three-component Flow for the transient 3D-computer code IVA2/001. Nuclear Technology, vol 78 pp 95–131Google Scholar
  29. 29.
    Kolev NI (1991) IVA3: A transient 3D three-phase, three-component flow analyzer, Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21–25, 1991, pp 171–180. The same paper was presented to the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal — Hydraulics, Kemforschungszentrum Karlsruhe, August 27 to 29, 1991Google Scholar
  30. 30.
    Kolev NI, Tomiyama A, Sakaguchi T (Sept. 1991) Modeling of the mechanical interaction between the velocity fields in three-phase flow, Experimental Thermal and Fluid Science, vol 4 no 5 pp 525–545CrossRefGoogle Scholar
  31. 31.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: conservation and state equations, Numerics. KfK 4948, Kernforschungszentrum KarlsruheGoogle Scholar
  32. 32.
    Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156Google Scholar
  33. 33.
    Kolev NI (1993) IVA3 NW: Computer code for modeling of transient three-phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Oct. 5–8, 1993, Grenoble, FranceGoogle Scholar
  34. 34.
    Kolev NI (1993) Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasser-Kühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002Google Scholar
  35. 35.
    Kolev NI (1993) IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041Google Scholar
  36. 36.
    Kolev NI (1993) IVA3-NW components: relief valves, pumps, heat structures, Siemens KWU Report R232/93/E0050Google Scholar
  37. 37.
    Kolev NI (1994) IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  38. 38.
    Kolev NI (1994) The code IVA4: Modelling of momentum conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 6 pp 249–258Google Scholar
  39. 39.
    Kolev NI (1995) The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media, Kerntechnik, vol 60 no 1, pp 1–39Google Scholar
  40. 40.
    Kolev NI (1994) The influence of the mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, vol 8 pp 167–174CrossRefGoogle Scholar
  41. 41.
    Kolev NI (1996) Three Fluid Modeling With Dynamic Fragmentation and Coalescence Fiction or Daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16, 1996; Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, MD, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan.Google Scholar
  42. 42.
    Kolev NI (1997) Comments on the entropy concept, Kerntechnik, vol 62 no 1 pp 67–70Google Scholar
  43. 43.
    Kolev N I (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, Log. Nr. 315Google Scholar
  44. 44.
    Lahey RT Jr (Jan. 1991) Void wave propagation phenomena in two-phase flow, AIChE Journal, vol 31 no 1 pp 123–135CrossRefGoogle Scholar
  45. 45.
    Lahey RT Jr (1990) The analysis of phase separation and phase distribution phenomena using two-fluid models, NED 122 pp 17–40CrossRefGoogle Scholar
  46. 46.
    Lamb MA (1945) Hydrodynamics, Cambridge University Press, CambridgeGoogle Scholar
  47. 47.
    Lamb H (1945) Hydrodynamics, Dover, New YorkGoogle Scholar
  48. 48.
    Mamaev WA, Odicharia G S, Semeonov N I, Tociging A A (1969) Gidrodinamika gasogidkostnych smesey w trubach, MoskvaGoogle Scholar
  49. 49.
    Milne-Thomson LM (1968) Theoretical Hydrodynamics, MacMillan & Co. Ltd., LondonGoogle Scholar
  50. 50.
    Mokeyev GY (1977) Effect of particle concentration on their drag induced mass, Fluid. Mech. Sov. Res., vol 6 p 161Google Scholar
  51. 51.
    Nigmatulin RT (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. of Multiphase Flow, vol. 5 pp. 353–389CrossRefGoogle Scholar
  52. 52.
    No HC, Kazimi MS (1985) Effects of virtual mass of the mathematical characteristics and numerical stability of the two-fluid model, NSE 89 pp. 197–206Google Scholar
  53. 53.
    Prandtl L (1952) Essentials of Fluid Dynamics, Blackie & Son, Glasgow pp. 342Google Scholar
  54. 54.
    Ransom VH et al. (March 1987) RELAP5/MOD2 Code manual, vol 1: Code structure, system models, and solution methods, NUREG/CR-4312, EGG-2396, rev 1Google Scholar
  55. 55.
    Ruggles AE et al (1988) An investigation of the propagation of pressure perturbation in bubbly air/water flows, Trans. ASME J. Heat Transfer, vol 110 pp 494–499Google Scholar
  56. 56.
    Schlichting H (1959) Boundary layer theory, Mc Graw-Hill, New YorkGoogle Scholar
  57. 57.
    Sha T, Chao BT, Soo SL (1984) Porous-media formulation for multi-phase flow with heat transfer, Nuclear Engineering and Design, vol 82 pp 93–106CrossRefGoogle Scholar
  58. 58.
    Slattery JC (1967) Flow of visco-elastic fluids through porous media, AIChE Journal, vol 13 pp 1066CrossRefGoogle Scholar
  59. 59.
    Slattery JC (1990) Interfacial transport phenomena, Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  60. 60.
    Slattery JC (1999) Advanced transport phenomena, Cambridge University PressGoogle Scholar
  61. 61.
    Soo SL, Tung, S K (1972) J. Powder Techn., vol 6 p 283CrossRefGoogle Scholar
  62. 62.
    Staffman PG (1965) The lift on a small sphere in a slow shear flow, J. Fluid Mech., vol 22, Part 2 pp 385–400Google Scholar
  63. 63.
    Stuhmiller JH (1977) The influence of the interfacial pressure forces on the character of the two-phase flow model, Proc. of the 1977 ASME Symp. on Computational Techniques for Non-Equilibrium Two-Phase Phenomena, pp 118–124Google Scholar
  64. 64.
    Thomas GB, Jr., Finney RL, Weir MD (1998) Calculus and analytic geometry, 9th Edition, Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  65. 65.
    Trent DS, Eyler LL (1983) Application of the TEMPTEST computer code for simulating hydrogen distribution in model containment structures, PNL-SA-10781, DE 83 002725Google Scholar
  66. 66.
    Truesdell C (1968) Essays in the history of mechanics, Springer-Verlag, New YorkGoogle Scholar
  67. 67.
    van Wijngaarden L (1976) Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech., vol 77 pp 27–44Google Scholar
  68. 68.
    Vasseur P, Cox RG (1976) The lateral migration of spherical particles in two-dimensional shear flows, J. Fluid Mech., vol 78 Part 2 pp 385–413Google Scholar
  69. 69.
    Whitaker S (1967) Diffusion and dispersion in porous media, AIChE Journal, vol 13 pp 420CrossRefGoogle Scholar
  70. 70.
    Whitaker S (1969) Advances in theory of fluid motion in porous media, Ind. Engrg. Chem., vol 61 no 12 pp 14–28CrossRefGoogle Scholar
  71. 71.
    Whitaker S (1985) A Simple geometrical derivation of the spatial averaging theorem, Chemical Engineering Education, pp 18–21, pp 50–52Google Scholar
  72. 72.
    Winatabe T, Hirano M, Tanabe F, Kamo H (1990) The effect of the virtual mass force term on the numerical stability and efficiency of the system calculations, Nuclear Engineering and design, vol 120 pp 181–192CrossRefGoogle Scholar
  73. 73.
    Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hill, New YorkGoogle Scholar
  74. 74.
    Zuber N (1964) On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Science, vol 49 pp 897–917CrossRefGoogle Scholar
  75. 75.
    Zwick SA (1906) J. Math. Phys., vol 4 p 289Google Scholar
  76. 76.
    Kolev NI (1977) Two-phase two-component flow (air-water steam-water) among the safety compartments of the nuclear power plants with water cooled nuclear reactors during lose of coolant accidents, PhD Thesis, Technical University DresdenGoogle Scholar
  77. 77.
    Biberg D (December 1999) An explicit approximation for the wetted angle in two-phase stratified pipe flow, The Canadian Journal of Chemical Engineering, vol 77 pp 1221–1224Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations