Numerical methods for multi-phase flow in curvilinear coordinate systems


Curvilinear Coordinate System Regular Topology Constrain Interpolation Profile Contravariant Vector Fluid Engineer Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antal SP et al (2000) Development of a next generation computer code for the prediction of multi-component multiphase flows, Int. Meeting on Trends in Numerical and Physical Modeling for Industrial Multiphase Flow, Cargese, FranceGoogle Scholar
  2. 2.
    Brackbill JU, Kothe DB and Zeinach C (1992) A continuum method for modelling surface tension, Journal of Computational Physics, vol 100, p 335CrossRefGoogle Scholar
  3. 3.
    Gregor C, Petelin S and Tiselj I (2000) Upgrade of the VOF method for the simulation of the dispersed flow, Proc. of ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11–15Google Scholar
  4. 4.
    Harlow FH and Amsden AA (1975) Numerical calculation of multiphase flow, Journal of Computational Physics vol 17 pp 19–52CrossRefGoogle Scholar
  5. 5.
    Hirt CW (1993) Volume-fraction techniques: powerful tools for wind engineering, J. Wind Engineering and Industrial Aerodynamics, vol 46–47, p 327CrossRefGoogle Scholar
  6. 6.
    Hou S, Zou Q, Chen S, Doolen G and Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., vol 118, p 329CrossRefGoogle Scholar
  7. 7.
    Jamet D, Lebaigue O, Courtis N and Delhaye (2001) The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, Jornal of Comp. Physics vol 169 pp 624–651CrossRefGoogle Scholar
  8. 8.
    Kolev NI (1994) IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  9. 9.
    Kolev NI (1994) The code IVA4: Modelling of momentum conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 6 pp 249–258Google Scholar
  10. 10.
    Kolev NI (1995) The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media, Kerntechnik, vol 60 no 1, pp 1–39Google Scholar
  11. 11.
    Kolev NI (1997) Comments on the entropy concept, Kerntechnik, vol 62 no 1 pp 67–70Google Scholar
  12. 12.
    Kolev NI (1998) On the variety of notation of the energy conservation principle for single phase flow, Kerntechnik, vol 63 no 3 pp 145–156Google Scholar
  13. 13.
    Kolev NI (2001) Conservation equations for multi-phase multi-component multi-velocity fields in general curvilinear coordinate systems, Keynote lecture, Proceedings of ASME FEDSM’01, ASME 2001 Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, May 29–June 1, 2001Google Scholar
  14. 14.
    Kothe DB, Rider WJ, Mosso SJ, Brock JS and Hochstein JI (1996) Volume tracking of Interfaces having surface tension in two and three dimensions. AIAA 96-0859Google Scholar
  15. 15.
    Kumbaro A, Toumi I and Seignole V (April 14–18, 2002) Numerical modeling of two-phase flows using advanced two fluid system, Proc. of ICONE10, 10th Int. Conf. On Nuclear Engineering, Arlington, VA, USAGoogle Scholar
  16. 16.
    Lahey RT Jr and Drew D (October 3–8, 1999) The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model, Ninth Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-9), San Francisco, CaliforniaGoogle Scholar
  17. 17.
    Miettinen J and Schmidt H (April 14–18, 2002) CFD analyses for water-air flow with the Euler-Euler two-phase model in the FLUENT4 CFD code, Proc. of ICONE10, 10th Int. Conf. On Nuclear Engineering, Arlington, VA, USAGoogle Scholar
  18. 18.
    Nakamura T, Tanaka R, Yabe T and Takizawa K (2001) Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, J. Comput. Phys., vol 147 p 171CrossRefGoogle Scholar
  19. 19.
    Nourgaliev RR, Dinh TN and Sehgal BR (2002) On lattice Boltzmann modelling of phase transition in isothermal non-ideal fluid, Nuclear Engineering and Design, vol 211 pp 153–171CrossRefGoogle Scholar
  20. 20.
    Osher S and Fredkiw R (2003) Level set methods and dynamic implicit surfaces, Springer-Verlag New York, Inc.Google Scholar
  21. 21.
    Rider WJ and Kothe DB (1998) Reconstructing volume tracking. Journal of Computational Physics, vol 141 p 112Google Scholar
  22. 22.
    Staedke H, Franchello G and Worth B (June 8–12, 1998) Towards a high resolution numerical simulation of transient two-phase flow, Third International Conference on Multi-Phase, ICMF’98Google Scholar
  23. 23.
    Sussman M, Smereka P and Oslier S ( 1994) A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, vol 114 p 146CrossRefGoogle Scholar
  24. 24.
    Swthian JA (1996) Level set methods, Cambridge University PressGoogle Scholar
  25. 25.
    Takewaki H, Nishiguchi A and Yabe T, (1985) The Cubic-Interpolated Pseudo Particle (CIP) Method for Solving Hyperbolic-Type Equations, J. Comput. Phys., vol 61 p 261CrossRefGoogle Scholar
  26. 26.
    Takewaki H and Yabe Y (1987) Cubic-Interpolated Pseudo Particle (CIP) Method — Application to Nonlinear Multi-Dimensional Problems, J. Cornput. Phys., vol 70 p 355CrossRefGoogle Scholar
  27. 27.
    Tomiyama A et al. (2000) (N+2)-Field modelling of dispersed multiphase flow, Proc. of ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11–15Google Scholar
  28. 28.
    Toumi I at al (April 2–6, 2000) Development of a multi-dimensional upwind solver for two-phase water/steam flows, Proc. of ICONE 8, 8th Int. Conf. On Nuclear Engineering, Baltimore, MD USAGoogle Scholar
  29. 29.
    Tryggavson G at al. (2001) A front tracking method for the computations of multiphase flows, Journal of Comp. Physics vol 169 pp 708–759CrossRefGoogle Scholar
  30. 30.
    Verschueren M (1999) A difuse-interface model for structure development in flow, PhD Thesis, Technische Universitteit EindhovenGoogle Scholar
  31. 31.
    Wijngaarden L (1976) Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech., vol 77 pp 27–44Google Scholar
  32. 32.
    Yabe T and Takei E (1988) A New Higher-Order Godunov Method for General Hyperbolic Equations. J.Phys. Soc. Japan, vol 57 p 2598CrossRefGoogle Scholar
  33. 33.
    Xiao F and Yabe T (2001) Completely conservative and oscillation-less semi-Lagrangian schemes for advection transportation, J. Comput. Phys., vol 170 p 498CrossRefGoogle Scholar
  34. 34.
    Xiao F, Yabe T, Peng X and Kobayashi H, (2002) Conservation and oscillation-less transport schemes based an rational functions, J. Geophys. Res., vol 107, p 4609CrossRefGoogle Scholar
  35. 35.
    Xiao F (2003) Profile-modifiable conservative transport schemes and a simple multi integrated moment formulation for hydrodynamics, in Computational Fluid Dynamics 2002, Amfield S, Morgan P and Srinivas K, eds, Springer, p 106Google Scholar
  36. 36.
    Xiao F and Ikebata A (2003) An efficient method for capturing free boundary in multifluid simulations, Int. J. Numer. Method in Fluid. vol 42 pp 187–210CrossRefMathSciNetGoogle Scholar
  37. 37.
    Yabe T and Wang PY (1991) Unified Numerical Procedure for Compressible and Incompressible Fluid, J. Phys. Soc. Japan vol 60 pp 2105–2108CrossRefGoogle Scholar
  38. 38.
    Yabe T and Aoki A (1991) A Universal Solver for Hyperbolic-Equations by Cubic Polynomial Interpolation. I. One-Dimensional Solver, Comput. Phys. Commun., vol 66 p 219CrossRefGoogle Scholar
  39. 39.
    Yabe T, Ishikawa T, Wang PY, Aoki T, Kadota Y and Ikeda F (1991) A universal solver for hyperbolic-equations by cubic-polynomial interpolation. II. 2-dimensional and 3-dimensional solvers. Comput. Phys. Commun., vol 66 p 233CrossRefGoogle Scholar
  40. 40.
    Yabe T, Xiao F and Utsumi T (2001) Constrained Interpolation Profile Method for Multiphase Analysis, J. Comput. Phys., vol 169 pp 556–593CrossRefGoogle Scholar
  41. 41.
    Yabe T, Tanaka R, Nakamura T and Xiao F (2001) Exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Wea. Rev., vol. 129 p 332CrossRefGoogle Scholar
  42. 42.
    Yabe T, Xiao F and Utsumi T (2001) The constrained interpolation profile method for multiphase analysis, J. Comput. Phys., vol 169 p 556CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations