Conservation equations in general curvilinear coordinate systems


Versus Versus Versus Mass Conservation Equation Heterogeneous Porous Medium Curvilinear Coordinate System Transform Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolev NI (1986) Transiente Dreiphasen Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080.Google Scholar
  2. 2.
    Kolev NI (August 1987) A three field-diffusion model of three-phase, three-component flow for the transient 3D-computer code IVA2/01, Nuclear Technology, vol 78 pp 95–131Google Scholar
  3. 3.
    Kolev NI (1991) Derivatives for the equation of state of multi-component mixtures for universal multi-component flow models, Nuclear Science and Engineering: vol 108 p 74–87Google Scholar
  4. 4.
    Kolev NI (1994) The code IVA4: Modeling of mass conservation in multi-phase multi component flows in heterogeneous porous media, Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  5. 5.
    Kolev NI (1994) The code IVA4: Modeling of momentum conservation in multi phase flows in heterogeneous porous media, Kerntechnik, vol 59 no 6 pp 249–258Google Scholar
  6. 6.
    Kolev NI (1995) The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media, Kerntechnik, vol 60 no 1 pp 1–39Google Scholar
  7. 7.
    Kolev NI (1997) Comments on the entropy concept, Kerntechnik, vol 62 no 1 pp 67–70Google Scholar
  8. 8.
    Kolev NI (1998) On the variety of notation of the energy conservation principle for single phase flow, Kerntechnik, vol 63 no 3 pp 145–156Google Scholar
  9. 9.
    Kolev NI (1999) Applied multi-phase flow analysis and its relation to constitutive physics, Proc. of the 8th International Symposium on Computational Fluid Dynamics, ISCFD ‘99 5–10 September 1999 Bremen, Germany. Japan Journal for Computational Fluid Dynamics, 2000Google Scholar
  10. 10.
    Kolev NI (2001) Conservation equations for multi-phase multi-component multi-velocity fields in general curvilinear coordinate systems, Keynote lecture, Proceedings of ASME FEDSM’01, ASME 2001 Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, May 29–June 1, 2001Google Scholar
  11. 11.
    Peyret R, editor: (1996) Handbook of computational fluid mechanics, Academic Press, LondonGoogle Scholar
  12. 12.
    Thompson J F, Warsi ZUA, Wayne MC (1985) Numerical grid generation, North-Holand, New York-Amsterdam-OxfordGoogle Scholar
  13. 13.
    Vinokur M (1974) Conservation equations of gas dynamics in curvilinear coordinate systems, J. Comput. Phys., vol 14 pp 105–125CrossRefGoogle Scholar
  14. 14.
    Vivand H (1974) Formes conservatives des equations de la dynamique des gas, Conservative forms of gas dynamics equations, La Recherche Aerospatiale, no 1 (Janvier-Fevrier), p 65 a 68.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations