Mass conservation


Velocity Field Control Volume Mass Conservation Versus Versus Versus Local Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds, Ind. Eng. Fundam., vol 6 p 527CrossRefGoogle Scholar
  2. 2.
    Batchelor GK (1970) The stress system in a suspension of force-free particles, J. Fluid Mech., vol 42 pp 545–570Google Scholar
  3. 3.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension, J. Comput. Phys., vol 100 pp 335–354CrossRefGoogle Scholar
  4. 4.
    Delhaye JM, Giot M, Reithmuller ML (1981) Thermohydraulics of two-phase systems for industrial design and nuclear engineering, Hemisphere Publishing Corporation, New York, McGraw Hill Book Company, New YorkGoogle Scholar
  5. 5.
    Deich ME, Philipoff G A (1981) Gas dynamics of two phase flows. (In Russian) Energoisdat, MoscowGoogle Scholar
  6. 6.
    Faeth GM, 1995, Spray combustion: A Review, Proc. of The 2nd International Conference on Multiphase Flow ‘95 Kyoto, April 3–7, 1995, Kyoto, JapanGoogle Scholar
  7. 7.
    Fick A (1855) Über Diffusion. Ann. der Physik, 94 p 59Google Scholar
  8. 8.
    Gentry RA, Martin RE and Daly BJ (1966) An Eulerian differencing method for unsteady compressible flow problems, J. Comp. Physics, vol 1 p 87CrossRefGoogle Scholar
  9. 9.
    Gray WG, Lee PCY (1977) On the theorems for local volume averaging of multi-phase system, Int. J. Multi-Phase Flow, vol 3 pp 222–340Google Scholar
  10. 10.
    Grigorieva VA and Zorina VM (eds) (1988) Handbook of thermal engineering, thermal engineering experiment, in Russian, 2d Edition, Moskva, Atomisdat, vol 2Google Scholar
  11. 11.
    Griffith L (1943) A theory of the size distribution of particles in a comminuted system, Canadian J. Research, vol 21 A no. 6 pp 57–64Google Scholar
  12. 12.
    Hetstrony G (1982) Handbook of multi phase systems. Hemisphere Publ. Corp., Washington et al., McGraw-Hill Book Company, New York …Google Scholar
  13. 13.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for dynamics of free boundaries, J. Comput. Phys., vol. 39 pp 201–225CrossRefGoogle Scholar
  14. 14.
    Hirt CW (1993) Volume-fraction techniques: powerful tools for wind engineering, Journal of Wind Engineering and Industrial Aerodynmics, vol 46&47 pp 327–338Google Scholar
  15. 15.
    Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow, Eyrolles, ParisGoogle Scholar
  16. 16.
    Kataoka I, Ishii M, Mishima K (June 1983) Transactions of the ASME, vol 105 pp 230–238Google Scholar
  17. 17.
    Kocamustafaogulari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass transfer, vol 26 no 9 pp 1377–1387Google Scholar
  18. 18.
    Kolev NI (March 1985) Transiente Drephasen Dreikomponenten Strömung, Teil 1: Formulierung des Differentialgleichungssystems, KfK Report 3910Google Scholar
  19. 19.
    Kolev NI (August 1985) Transiente Dreiphasen Dreikomponenten Stroemung, Teil 2: Eindimensionales Schlupfmodell Vergleich Theorie-Experiment, KfK Report 3926Google Scholar
  20. 20.
    Kolev NI (1986) Transiente Dreiphasen Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell, KfK Report 4080Google Scholar
  21. 21.
    Kolev N I (1986) Transient three-dimensional three-phase three-component nonequilibrium flow in porous bodies described by three-velocity fields, Kernenergie 29 pp 383–392Google Scholar
  22. 22.
    Kolev NI (August 1987) A three field-diffusion model of three-phase, three-component flow for the tansient 3D-computer code IVA2/001. Nuclear Technology, vol 78 pp 95–131Google Scholar
  23. 23.
    Kolev NI (1990) Derivatives for the state equations of multi-component mixtures for universal multi-component flow models, Nuclear Science and Engineering, vol 108 pp 74–87Google Scholar
  24. 24.
    Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics, KfK Report 4948Google Scholar
  25. 25.
    Kolev NI (1991) IVA3: A transient 3D three-phase, three-component flow analyzer, Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21–25, 1991, pp 171–180. Presented at the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal-Hydraulics, Kernforschungszentrum Karlsruhe, August 27 to 29 1991Google Scholar
  26. 26.
    Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, vol 6 pp 211–251CrossRefGoogle Scholar
  27. 27.
    Kolev NI (1993) The code IVA3 for modelling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156Google Scholar
  28. 28.
    Kolev NI (1993) IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermmal Hydraulics, Oct. 5–8, 1993, Grenoble, FranceGoogle Scholar
  29. 29.
    Kolev NI (1993) Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasserkühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002Google Scholar
  30. 30.
    Kolev NI (1993) IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041Google Scholar
  31. 31.
    Kolev NI (1993) IVA3-NW Components: Relief Valves, Pumps, Heat Structures, Siemens KWU Report R232/93/E0050Google Scholar
  32. 32.
    Kolev NI (1994) The influence of the mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, 8 pp 167–174CrossRefGoogle Scholar
  33. 33.
    Kolev NI (1994) The code IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 4–5 pp 226–237Google Scholar
  34. 34.
    Kolev NI (1996) Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16, 1996; Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, MD, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, JapanGoogle Scholar
  35. 35.
    Kolev NI (1998) Can melt-water interaction jeopardize the containment integrity of the EPR? Part 3: Fragmentation and coalescence dynamics in multi-phase flows, KWU NA-T/1998/E083a, Project EPRGoogle Scholar
  36. 36.
    Kolev NI (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, Log. Nr. 315Google Scholar
  37. 37.
    Kolomentzev AI, Dushkin AL (1985) Vlianie teplovoj i dinamiceskoj neravnovesnosty faz na pokasatel adiabatj v dwuchfasnijh sredach, TE 8 pp 53–55Google Scholar
  38. 38.
    Mugele R A, Evans H D (151) Droplet size distribution in sprays, Ing. Eng. Chem., vol.43 pp 1317–1324CrossRefGoogle Scholar
  39. 39.
    Nukiama S, Tanasawa Y (1931) Trans. Soc. Mech. Engrs. (Japan), vol 4 no 14 p.86Google Scholar
  40. 40.
    Pilch M, Erdman CA, Reynolds AB (August 1981) Acceleration induced fragmentation of liquid drops, Charlottesville, VA: Department of Nucl. Eng., University of Virginia, NUREG/CR-2247Google Scholar
  41. 41.
    Reid RC, Prausnitz JM, Sherwood TK (1982) The properties of gases and liquids, Third Edition, McGraw-Hill Book Company, New YorkGoogle Scholar
  42. 42.
    Riznic J R, Ishii M (1989) Bubble number density and vapor generation in flushing flow, Int. J. Heat Mass Transfer, vol 32 no 10 pp 1821–1833CrossRefGoogle Scholar
  43. 43.
    Rosin P, Rammler E, (1933) Laws governing the fineness of powdered coal, J. Inst. Fuel, vol 7 pp 29–36Google Scholar
  44. 44.
    Sauter J (1929) NACA Rept. TM-518Google Scholar
  45. 45.
    Sha T, Chao BT, Soo SL (1984) Porous-media formulation for multi-phase flow with heat transfer, Nuclear Engineering and Design, vol 82 pp 93–106CrossRefGoogle Scholar
  46. 46.
    Slattery JC (1967) Flow of viscoelastic fluids through porous media, AIChE Journal, vol 13 p 1066CrossRefGoogle Scholar
  47. 47.
    Slattery JC (1990) Interfacial transport phenomena, Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. 48.
    Teletov SG (1958) On the problem of fluid dynamics of two-phase mixtures, I. Hydrodynamic and energy equations, Bulletin of the Moscow University, No 2, p 15Google Scholar
  49. 49.
    Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hil, New York 1969Google Scholar
  50. 50.
    Whitaker S (1967) Diffusion and dispersion in porous media, AIChE Journal, vol 13 p 420CrossRefGoogle Scholar
  51. 51.
    Whitaker S (1969) Advances in theory of fluid motion in porous media, Ind. Eng. Chem., vol 61 no 12 pp 14–28CrossRefGoogle Scholar
  52. 52.
    Whitaker S (1977) Experimental principles of heat transfer, Pergamon Press Inc., New York, 1977Google Scholar
  53. 53.
    Whitaker S (1985) A simple geometrical derivation of the spatial averaging theorem, Chemical Engineering Education, Chemical Engineering Education, pp 18–21 pp 50–52Google Scholar
  54. 54.
    Zemansky MW (1968) Heat and thermodynamics, McGraw-Hill Book Company, Fifth EditionGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations