Domain Decomposition for Discontinuous Galerkin Method with Application to Stokes Flow

  • Piotr Krzyżanowski
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


We report on recent results related to domain decomposition methods based on the Discontinuous Galerkin discretizations of Stokes equations. We analyze the efficiency of a block nonoverlapping Schwarz preconditioner based on the approach by Feng and Karakashian [2001]. We also prove the inf-sup stability of a substructuring method.


Stokes Equation Domain Decomposition Discontinuous Galerkin Discontinuous Galerkin Method Domain Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19(4):742–760, 1982. ISSN 0036-1429.zbMATHMathSciNetCrossRefGoogle Scholar
  2. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779 (electronic), 2001/02. ISSN 1095-7170.MathSciNetCrossRefGoogle Scholar
  3. J. M. Boland and R. A. Nicolaides. Stability of finite elements under divergence constraints. SIAM J. Numer. Anal., 20(4):722–731, 1983. ISSN 0036-1429.MathSciNetCrossRefGoogle Scholar
  4. B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab. Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal., 40(1):319–343 (electronic), 2002. ISSN 1095-7170.MathSciNetCrossRefGoogle Scholar
  5. J. Douglas, Jr. and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975), pages 207–216. Lecture Notes in Phys., Vol. 58. Springer, Berlin, 1976.Google Scholar
  6. X. Feng and O. A. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39(4):1343–1365 (electronic), 2001. ISSN 1095-7170.MathSciNetCrossRefGoogle Scholar
  7. L. Filippini and A. Toselli. hp finite element approximations on non-matching grids for the Stokes problem. Technical report, ETH, Zurich, Switzerland, 2002.Google Scholar
  8. A. Klawonn. Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J. Sci. Comput., 19(1):172–184 (electronic), 1998a. ISSN 1095-7197. Special issue on iterative methods (Copper Mountain, CO, 1996).zbMATHMathSciNetCrossRefGoogle Scholar
  9. A. Klawonn. An optimal preconditioner for a class of saddle point problems with a penalty term. SIAM J. Sci. Comput., 19(2):540–552 (electronic), 1998b. ISSN 1095-7197.zbMATHMathSciNetCrossRefGoogle Scholar
  10. P. Krzyżanowski. On block preconditioners for nonsymmetric saddle point problems. SIAM J. Sci. Comp., 23(1):157–169, 2001.CrossRefGoogle Scholar
  11. L. F. Pavarino and O. B. Widlund. Balancing Neumann-Neumann methods for incompressible Stokes equations. Comm. Pure Appl. Math., 55(3):302–335, 2002. ISSN 0010-3640.MathSciNetCrossRefGoogle Scholar
  12. D. Schötzau, C. Schwab, and A. Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194 (electronic) (2003), 2002. ISSN 1095-7170.MathSciNetCrossRefGoogle Scholar
  13. A. Toselli. hp discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci., 12(11):1565–1597, 2002. ISSN 0218-2025.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piotr Krzyżanowski
    • 1
  1. 1.Faculty of Mathematics, Informatics and MechanicsWarsaw UniversityWarsaw

Personalised recommendations