Advertisement

A Domain Decomposition Based Two-Level Newton Scheme for Nonlinear Problems

  • Deepak V. Kulkarni
  • Daniel A. Tortorelli
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

We present two non-overlapping domain decomposition based two-level Newton schemes for solving nonlinear problems and demonstrate their effectiveness by analyzing systems with balanced and unbalanced nonlinearities. They both have been implemented in parallel and show good scalability. The implementations accommodate non-symmetric matrices and unstructured meshes.

Keywords

Domain Decomposition Unstructured Mesh Single Processor Inexact Newton Method Balance Nonlinearity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aluru and J. White. A MLN method for mixed-energy domain sim. of MEMS. Journal of MEMS systems, 8(3):299–308, 1999.Google Scholar
  2. M. Bächtold, J. Korvink, J. Funk, and H. Baltes. New convergence scheme for self-consistent electromech. analysis of iMEMS. In IEEE Inter. Electron Devices Meeting, 1995.Google Scholar
  3. S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc, v. 2.1.3 code and documentation. URL http://www-unix.mcs.anl.gov/petsc/.Google Scholar
  4. P. Bjørstad, J. Koster, and P. Krzyżanowski. DD solvers for large scale industrial finite element problems. In PARA 2000, volume 1947 of LNCS. Springer, 2001.Google Scholar
  5. X.-C. Cai and D. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput., 24:183–200, 2002.MathSciNetCrossRefGoogle Scholar
  6. X.-C. Cai, D. E. Keyes, and D. P. Young. A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flow. In Proc. D.D. Methods-13, 2001.Google Scholar
  7. J. Demmel, J. Gilbert, and X. Li. SuperLU v. 2.0 code and documentation. URL http://crd.lbl.gov/~xiaoye/SuperLU/.Google Scholar
  8. C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal unified FETI method-part I. IJNME, 50:1523–1544, 2001.MathSciNetCrossRefGoogle Scholar
  9. M. P. I. Forum. MPI: A message-passing interface standard. Inter. J. Supercomputing Apps., 8(3/4), 1994.Google Scholar
  10. G. Karypis and V. Kumar. METIS: v. 4.0 code and documentation. URL http://www-users.cs.umn.edu/~karypis/metis.Google Scholar
  11. D. Keyes. DD methods for PDEs. SIAM J. Sci. Statistic. Comput., 13:967–993, 1992.MATHMathSciNetCrossRefGoogle Scholar
  12. D. Keyes. Aerodynamic applications of NKS solvers. In Proceedings of the 14th Conf. Numer. Methods in Fluid Dynamics, pages 1–20, Berlin, 1995.Google Scholar
  13. J. Kim, N. Aluru, and D. Tortorelli. Improved MLN solvers for fully-coupled multi-physics problems. IJNME, 58, 2003.Google Scholar
  14. D. Knoll and D. Keyes. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. Journal of Comp. Physics, 2002.Google Scholar
  15. Y. Saad and M. H. Schultz. GMRES: An algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.MathSciNetCrossRefGoogle Scholar
  16. B. Smith, P. Bjørstad, and W. Gropp. D.D, Parallel multilevel methods for elliptic PDEs. Cambridge University Press, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Deepak V. Kulkarni
  • Daniel A. Tortorelli
    • 1
  1. 1.Department of Mechanical and Industrial Engineering UrbanaUniversity of Illinois

Personalised recommendations