Coupled Boundary and Finite Element Tearing and Interconnecting Methods

  • Ulrich Langer
  • Olaf Steinbach
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


We have recently introduced the Boundary Element Tearing and Interconnecting (BETI) methods as boundary element counterparts of the well-established Finite Element Tearing and Interconnecting (FETI) methods. Since Finite Element Methods (FEM) and Boundary Element Methods (BEM) have certain complementary properties, it is sometimes very useful to couple these discretization techniques and to benefit from both worlds. Combining our BETI techniques with the FETI methods gives new, quite attractive tearing and interconnecting parallel solvers for large scale coupled boundary and finite element equations. There is an unified framework for coupling, handling, and analyzing both methods. In particular, the FETI methods can benefit from preconditioning components constructed by boundary element techniques. This is especially true for sparse versions of the boundary element method such as the fast multipole method which avoid fully populated matrices arising in classical boundary element methods.


Boundary Element Boundary Element Method Domain Decomposition Domain Decomposition Method Fast Multipole Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Brenner. An additive Schwarz preconditioner for the FETI method. Numer. Math., 94(1):1–31, 2003.MATHMathSciNetCrossRefGoogle Scholar
  2. M. Costabel. Symmetric methods for the coupling of finite elements and boundary elements. In C. Brebbia, W. Wendland, and G. Kuhn, editors, Boundary Elements IX, pages 411–420, Berlin, Heidelberg, New York, 1987. Springer.Google Scholar
  3. M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19:613–626, 1988.MATHMathSciNetCrossRefGoogle Scholar
  4. C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl., 7(7–8):687–714, 2000.MathSciNetCrossRefGoogle Scholar
  5. C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg., 32:1205–1227, 1991.CrossRefGoogle Scholar
  6. C. Farhat and F.-X. Roux. Implicite parallel processing in structural mechanics. In J. Oden, editor, Comput. Mech. Adv., pages 1–124, Amsterdam, 1994. North-Holland.Google Scholar
  7. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Physics, 73:325–348, 1987.MathSciNetCrossRefGoogle Scholar
  8. G. Haase, B. Heise, M. Kuhn, and U. Langer. Adaptive domain decompostion methods for finite and boundary element equations. In Boundary Element Topics (ed. by W. Wendland), pages 121–147, Berlin, 1998. Springer-Verlag.Google Scholar
  9. G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math., 125:521–537, 2000.MathSciNetCrossRefGoogle Scholar
  10. G. C. Hsiao and W. L. Wendland. A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58:449–481, 1977.MathSciNetCrossRefGoogle Scholar
  11. B. Khoromskij, W. Hackbusch, and R. Kriemann. Direct Schur complement method by hierarchical matrix techniques. In R. K. et al, editor, 15th International Conference on Domain Decomposition Methods, Berlin, August 20–25, 2003, Lecture Notes in Computational Science and Engineering (LNCSE), Heidelberg, 2004. Springer.Google Scholar
  12. A. Klawonn and O. Widlund. A domain decomposition method with Lagrange multipliers and inexact solvers for linear elasticity. SIAM J. Sci. Comput., 22(4):1199–1219, 2000.MathSciNetCrossRefGoogle Scholar
  13. A. Klawonn and O. Widlund. FETI and Neumann-Neumann Iterative Substructuring Methods: Connections and New Results. Comm. Pure Appl. Math., 54:57–90, January 2001.MathSciNetCrossRefGoogle Scholar
  14. A. Klawonn, O. Widlund, and M. Dryja. Dual-primal FETI methods for three-dimensional elliptic problems with heterogenous coefficients. SIAM J. Numer. Anal., 40(1):159–179, 2002.MathSciNetCrossRefGoogle Scholar
  15. U. Langer. Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition. Contemp. Math., 157:335–344, 1994.MATHGoogle Scholar
  16. U. Langer and O. Steinbach. Boundary element tearing and interconnecting method. Computing, 71:205–228, 2003.MathSciNetCrossRefGoogle Scholar
  17. J. Mandel and R. Tezaur. Convergence of a substrucuring method with Lagrange multipliers. Numer. Math., 73(4):473–487, 1996.MathSciNetCrossRefGoogle Scholar
  18. J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method. Numer. Math., 88:543–558, 2001.MathSciNetCrossRefGoogle Scholar
  19. J.-C. Nédélec. Integral equations with non-integrable kernels. Int. Eq. Operat. Th., 5:562–572, 1982.MATHCrossRefGoogle Scholar
  20. G. Of. Die Multipolmethode für Randintegralgleichungen. Diplomarbeit, Universit ät Stuttgart, Mathematisches Institut A, 2001.Google Scholar
  21. G. Of, O. Steinbach, and W. L. Wendland. The fast multipole method for the symmetric boundary integral formulation. 2004. in preparation.Google Scholar
  22. D. Stefanica. A numerical study of FETI algorithms for mortar finite element methods. SIAM J. Sci. Comput., 23(4):1135–1160, 2001.MATHMathSciNetCrossRefGoogle Scholar
  23. O. Steinbach. Stability estimates for hybrid coupled domain decomposition methods, volume 1809 of Lecture Notes in Mathematics. Springer, Heidelberg, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ulrich Langer
    • 1
  • Olaf Steinbach
    • 2
  1. 1.Institute of Computational MathematicsJohannes Kepler University LinzLinz
  2. 2.Institute for Applied Analysis and Numerical SimulationUniversity of StuttgartStuttgart

Personalised recommendations