Advertisement

The Fat Boundary Method: Semi-Discrete Scheme and Some Numerical Experiments

  • Silvia Bertoluzza
  • Mourad Ismail
  • Bertrand Maury
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

The Fat Boundary Method (FBM) is a fictitious domain like method for solving partial differential equations in a domain with holes Ω ∖\(\bar B\) — where B is a collection of smooth open subsets — that consists in splitting the initial problem into two parts to be coupled via Schwartz type iterations: the solution, with a fictitious domain approach, of a problem set in the whole domain Ω, for which fast solvers can be used, and the solution of a collection of independent problems defined on narrow strips around the connected components of B, that can be performed fully in parallel. In this work, we give some results on a semi-discrete FBM in the framework of a finite element discretization, and we present some numerical experiments.

Keywords

Local Resolution Poisson Problem Fast Solver Homogeneous Neumann Boundary Condition Fictitious Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Achdou and J.-L. Guermond. Convergence analysis of a finite element Projection/Lagrange-Galerkinmethod for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal., 37(3):799–826, 2000.MathSciNetCrossRefGoogle Scholar
  2. S. Bertoluzza, M. Ismail, and B. Maury. Analysis of the discrete fat boundary method. in preparation.Google Scholar
  3. M. Ismail. Simulation Numérique d'écoulements fluide-particules par la méthode de la frontière élargie. PhD thesis (in preparation), to appear in french, Université Pierre et Marie Curie, Paris, France, 2003.Google Scholar
  4. B. Maury. A Fat Boundary Method for the Poisson problem in a domain with holes. J. of Sci. Comput., 16(3):319–339, 2001.MATHMathSciNetCrossRefGoogle Scholar
  5. J. A. Nitsche and A. H. Schatz. Interior estimates for Ritz-Galerkin methods. Math. Comp., 28:937–958, 1974.MathSciNetCrossRefGoogle Scholar
  6. O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math., 38:309–332, 1982.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Silvia Bertoluzza
    • 1
  • Mourad Ismail
    • 2
  • Bertrand Maury
    • 3
  1. 1.Istituto di Matematica Applicata e Tecnologie Informatiche del C.N.R.PaviaItaly
  2. 2.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie CurieParis Cedex 05France
  3. 3.Laboratoire de MathématiquesUniversité Paris-SudOrsayFrance

Personalised recommendations