Advertisement

The FETI Based Domain Decomposition Method for Solving 3D-Multibody Contact Problems with Coulomb Friction

  • Radek Kučera
  • Jaroslav Haslinger
  • Zdeněk Dostál
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

The contribution deals with the numerical solving of contact problems with Coulomb friction for 3D bodies. A variant of the FETI based domain decomposition method is used. Numerical experiments illustrate the efficiency of our algorithm.

Keywords

Quadratic Programming Contact Problem Coulomb Friction Domain Decomposition Method Penetration Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Dostál. Inexact semi-monotonic augmented Lagrangians with optimal feasibility convergence for quadratic programming with simple bounds and equality constraints. SIAM J. Num. Anal., 2003. submitted.Google Scholar
  2. Z. Dostál, A. Friedlander, and S. A. Santos. Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Opt., 13:1120–1140, 2003.CrossRefGoogle Scholar
  3. Z. Dostál, J. Haslinger, and R. Kučera. Implementation of fixed point method for duality based solution of contact problems with friction. J. Comput. Appl. Math., 140:245–256, 2002.MathSciNetCrossRefGoogle Scholar
  4. Z. Dostál and J. Schöberl. Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Opt. Appl., 2003. submitted.Google Scholar
  5. C. Farhat and F. X. Roux. An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sc. Stat. Comput., 13:379–396, 1992.MathSciNetCrossRefGoogle Scholar
  6. J. Haslinger. Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Methods Appl. Sci, 5:422–437, 1983.MATHMathSciNetGoogle Scholar
  7. J. Haslinger, Z. Dostál, and R. Kučera. On splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng., 191:2261–2281, 2002.CrossRefGoogle Scholar
  8. J. Haslinger and I. Hlaváček. Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl., 86:99–122, 1982.MathSciNetCrossRefGoogle Scholar
  9. J. Haslinger, R. Kučera, and Z. Dostál. An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math., 2003. accepted.Google Scholar
  10. I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek. Solution of Variational Inequalities in Mechanics. Springer, Berlin, 1988.Google Scholar
  11. A. Klawonn and O. B. Widlund. FETI and Neumann-Neumann iterative substructuring methods: connections and new results. Communic. Pure Appl. Math., 54:57–90, 2001.MathSciNetCrossRefGoogle Scholar
  12. R. Krause and B. Wohlmuth. A Dirichlet-Neumann type algorithm for contact problems with friction. CVS, 5:139–148, 2002.MathSciNetGoogle Scholar
  13. J. Mandel and R. Tezaur. Convergence of substructuring method with Lagrange multipliers. Numerische Mathematik, 73:473–487, 1996.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Radek Kučera
    • 1
  • Jaroslav Haslinger
    • 2
  • Zdeněk Dostál
    • 3
  1. 1.Department of MathematicsVŠB-TU OstravaOstrava
  2. 2.Department of Metal PhysicsCharles UniversityPrague
  3. 3.Department of Applied MathematicsVŠB-Technical University OstravaOstrava

Personalised recommendations