A Stabilized Three-Field Formulation and its Decoupling for Advection-Diffusion Problems

  • Gerd Rapin
  • Gert Lube
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


We propose a new stabilized three-field formulation applied to the advection-diffusion equation. Using finite elements with SUPG stabilization in the interior of the subdomains our approach enables us to use almost arbitrary discrete function spaces. They need not to satisfy the inf-sup conditions of the standard three-field formulation. The scheme is stable and satisfies an optimal a priori estimate. Furthermore, we show how the scheme can be solved efficiently in parallel by an adapted Schur complement equation and an alternating Schwarz algorithm. Finally some numerical experiments confirm our theoretical results.


Domain Decomposition Augmented Lagrangian Approach Hyperbolic Limit Nonmatching Grid Strong Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. Baiocchi, F. Brezzi, and L. Marini. Stabilization of Galerkin methods and applications to domain decomposition. In A. Bensoussan and J. Verjus, editors, Future Tendencies in Computer Science, Control and Applied Mathematics, pages 345–355, Berlin-Heidelberg-New York, 1992. Springer-Verlag.Google Scholar
  2. S. Bertoluzza and A. Kunoth. Wavelet Stabilization and Preconditioning for Domain Decomposition. IMA J. Numer. Anal., 20:533–559, 2000.MathSciNetCrossRefGoogle Scholar
  3. F. Brezzi and D. Marini. Error Estimates for the three-field formulation with bubble stabilization. Math. Comp., 70:911–934, 2001.MathSciNetCrossRefGoogle Scholar
  4. G. Lube, T. Knopp, and G. Rapin. Acceleration of a non-overlapping Schwarz method for advection diffusion problems. Technical report, Universität Göttingen, 2003. DD 15 Preprint.Google Scholar
  5. G. Rapin. The Three-field Formulation for Elliptic Equations: Stabilization and Decoupling Strategies. PhD thesis, Universität Göttingen, 2003.Google Scholar
  6. G. Rapin and G. Lube. A stabilized scheme for the Lagrange multiplier method for advection-diffusion equations. Technical report, Universität Göttingen, 2003a. appears in M3AS.Google Scholar
  7. G. Rapin and G. Lube. A stabilized scheme of the three-field approach for advection-diffusion equations. Technical report, Universität Göttingen, 2003b. submitted.Google Scholar
  8. P. L. Tallec and T. Sassi. Domain Decomposition with nonmatching grids: Augmented Lagrangian Approach. Math. Comp., 64:1367–1396, 1995.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gerd Rapin
    • 1
  • Gert Lube
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingen

Personalised recommendations