Advertisement

Finite Volume Methods on Non-Matching Grids with Arbitrary Interface Conditions and Highly Heterogeneous Media

  • I. Faille
  • F. Nataf
  • L. Saas
  • F. Willien
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

We are interested in a robust and accurate domain decomposition method with arbitrary interface conditions on non-matching grids using a finite volume discretization. We introduce transmission operators to take into account the non-matching grids. Under compatibility assumptions, we have the well-posedness of the global problem and of the local subproblems with a new discretization of the arbitrary interface conditions. Then, we give two error estimates in the discrete H1 norm: the first one is in O(h1/2) with L2 orthogonal projections onto piecewise functions along the interface and the second one in O(h) with transmission conditions based on a linear rebuilding along the interface. Finally, numerical results confirm the theory. Particular attention is paid to the situation with non matching grids and highly heterogeneous coefficients both across and inside subdomains. The addition of a third very thin subdomain between geological blocks is necessary to ensure a good accuracy.

Keywords

Interface Condition Domain Decomposition Domain Decomposition Method Transmission Operator Volume Discretization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Aavatsmark, E. Reiso, and R. Teigland. Control-volume discretization method for quadrilateral grids with faults and local refinements. Computational Geosciences, pages 1–23, 2001.Google Scholar
  2. Y. Achdou, C. Japhet, Y. Maday, and F. Nataf. A new cement to glue nonconforming grids with Robin interface conditions: the finite volume case. Numer. Math., 92(4):593–620, 2002.MathSciNetCrossRefGoogle Scholar
  3. Y. Achdou, C. Japhet, P. L. Tallec, F. Nataf, F. Rogier, and M. Vidrascu. Domain decomposition methods for non-symmetric problems. In C.-H. Lai, P. E. Bjørstad, M. Cross, and O. B. Widlund, editors, Eleventh International Conference on Domain Decomposition Methods, pages 3–17, Bergen, 1999. Domain Decomposition Press.Google Scholar
  4. T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal., 1996. submitted.Google Scholar
  5. C. Bernardi, Y. Maday, and A. T. Patera. A new non conforming approach to domain decomposition: The mortar element method. In H. Brezis and J.-L. Lions, editors, Collège de France Seminar. Pitman, 1994. This paper appeared as a technical report about five years earlier.Google Scholar
  6. R. Cautrés, R. Herbin, and F. Hubert. Non matching finite volume grids and the non overlapping schwarz algorithm. In N. Debit, M. Garbey, R. Hoppe, J. Periaux, D. Keyes, and Y. Kuznetsov, editors, 13th International Conference on Domain Decomposition Methods, Lyon, pages 213–219, 2000.Google Scholar
  7. R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski. Local refinement techniques for elliptic problems on cell-centered grids. i: Error analysis. Math. Comput., 56(194):437–461, 1991.MathSciNetCrossRefGoogle Scholar
  8. R. Eymard, T. Gallouët, and R. Herbin. The finite volume method. In P. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, pages 713–1020. North Holland, 2000. This paper appeared as a technical report four years ago.Google Scholar
  9. I. Faille, E. Flauraud, F. Nataf, F. Schneider, and F. Willien. Optimized interface conditions for sedimentary basin modeling. In I. Herrera, D. E. Keyes, O. B. Widlund, and R. Yates, editors, 13th International Conference on Domain Decomposition Methods, Lyon, 2000.Google Scholar
  10. I. Faille, S. Wolf, and F. Schneider. Aspect numérique de la modèlisation de bassins sédimentaires. Technical Report 41 237, IFP, Mars 1994.Google Scholar
  11. L. Saas, I. Faille, F. Nataf, and F. Willien. Décomposition de domaine non conforme avec conditions de robin optimisées à l'interface et volumes finis. Technical Report 56947, IFP, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • I. Faille
    • 1
  • F. Nataf
    • 2
  • L. Saas
    • 1
    • 2
  • F. Willien
    • 1
  1. 1.IFPRueil-Malmaison cedexFrance
  2. 2.Ecole PolytechniqueCMAPPalaiseau CedexFrance

Personalised recommendations