Advertisement

Iterative Substructuring Methods for Indoor Air Flow Simulation

  • Tobias Knopp
  • Gert Lube
  • Ralf Gritzki
  • Markus Rösler
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

The numerical simulation of turbulent indoor-air flows is performed using iterative substructuring methods. We present a framework for coupling eddyviscosity turbulence models based on the non-stationary, incompressible, nonisothermal Navier-Stokes problem with non-isothermal near-wall models; this approach covers the k/ε model with an improved wall function concept. The iterative process requires the fast solution of linearized Navier-Stokes problems and of advection-diffusion-reaction problems. These subproblems are discretized using stabilized FEM together with a shock-capturing technique. For the linearized problems we apply an iterative substructuring technique which couples the subdomain problems via Robin-type transmission conditions. The method is applied to a benchmark problem, including comparison with experimental data by Tian and Karayiannis [2000] and to realistic ventilation problems.

Keywords

Rayleigh Number Domain Decomposition Streamwise Component Turbulence Natural Convection Nonoverlapping Domain Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Codina and O. Soto. Finite element implementations of two-equation and algebraic stress turbulence models for steady incompressible flow. Intern. J. Numer. Meths. Fluids, 90(3):309–334, 1999.CrossRefGoogle Scholar
  2. T. Knopp. Finite-element simulation of buoyancy-driven turbulent flows. PhD thesis, Universität Göttingen, 2003.Google Scholar
  3. T. Knopp, G. Lube, R. Gritzki, and M. Rösler. Iterative substructuring techniques for incompressible nonisothermal flows and its application to indoor air flow simulation. Intern. J. Numer. Meths. Fluids, 40:1527–1538, 2002.CrossRefGoogle Scholar
  4. G. Lube, T. Knopp, and G. Rapin. Acceleration of an iterative substructuring method for singularly perturbed elliptic problems. Technical report, Universität Göttingen, 2003.Google Scholar
  5. W. Richter, J. Seifert, R. Gritzki, and M. Rösler. Bestimmung des realen Luftwechsels bei Fensterlüftung aus energetischer und bauphysikalischer Sicht. Technical report, Dresden University of Technology, 2003.Google Scholar
  6. Y. Tian and T. Karayiannis. Low turbulence natural convection in an air filled square cavity, part i: The thermal and fluid flow field. Int. J. Heat Mass Transfer, 43:849–866, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tobias Knopp
    • 1
  • Gert Lube
    • 1
  • Ralf Gritzki
    • 2
  • Markus Rösler
    • 2
  1. 1.Math. Department, NAMGeorg-August-University of GöttingenGöttingen
  2. 2.Faculty of Mech. Engrg., TGADresden University of TechnologyDresden

Personalised recommendations