Advertisement

Local Defect Correction Techniques Applied to a Combustion Problem

  • Martijn Anthonissen
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)

Summary

The standard local defect correction (LDC) method has been extended to include multilevel adaptive gridding, domain decomposition, and regridding. The domain decomposition algorithm provides a natural route for parallelization by employing many small tensor-product grids, rather than a single large unstructured grid. The algorithm is applied to a laminar Bunsen flame with one-step chemistry.

Keywords

Coarse Grid Domain Decomposition Domain Decomposition Algorithm Combustion Problem Composite Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. H. Anthonissen. Local defect correction techniques: analysis and application to combustion. PhD thesis, Eindhoven University of Technology, Eindhoven, 2001.Google Scholar
  2. M. J. H. Anthonissen, B. A. V. Bennett, and M. D. Smooke. An adaptive multilevel local defect correction technique with application to combustion. Technical Report RANA 03-24, Eindhoven University of Technology, Eindhoven, Oct. 2003a.Google Scholar
  3. M. J. H. Anthonissen, R. M. M. Mattheij, and J. H. M. ten Thije Boonkkamp. Convergence analysis of the local defect correction method for diffusion equations. Numerische Mathematik, 95(3):401–425, 2003b.MathSciNetCrossRefGoogle Scholar
  4. B. A. V. Bennett and M. D. Smooke. Local rectangular refinement with application to axisymmetric laminar flames. Combust. Theory Modelling, 2:221–258, 1998.CrossRefGoogle Scholar
  5. B. A. V. Bennett and M. D. Smooke. Local rectangular refinement with application to nonreacting and reacting fluid flow problems. J. Comput. Phys., 151:684–727, 1999.MathSciNetCrossRefGoogle Scholar
  6. P. Deuflhard. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to muliple shooting. Num. Math., 22:289–315, 1974.MATHMathSciNetCrossRefGoogle Scholar
  7. P. J. J. Ferket and A. A. Reusken. Further analysis of the local defect correction method. Computing, 56:117–139, 1996.MathSciNetCrossRefGoogle Scholar
  8. W. Hackbusch. Local defect correction and domain decomposition techniques. In K. Böhmer and H. J. Stetter, editors, Defect Correction Methods. Theory and Applications, Computing, Suppl. 5, pages 89–113, Wien, New York, 1984. Springer.Google Scholar
  9. S. McCormick. Fast adaptive composite grid (FAC) methods. In K. Böhmer and H. J. Stetter, editors, Defect Correction Methods: Theory and Applications, pages 115–121. Computing Supplementum 5, Springer-Verlag, Wien, 1984a.Google Scholar
  10. S. McCormick. Fast adaptive composite grid (FAC) methods. In K. Böhmer and H. J. Stetter, editors, Defect Correction Methods: Theory and Applications, pages 115–121. Computing Supplementum 5, Springer-Verlag, Wien, 1984b.Google Scholar
  11. S. McCormick and U. Rüde. A finite volume convergence theory for the fast adaptive composite grid methods. Appl. Numer. Math., 14:91–103, 1994.MathSciNetCrossRefGoogle Scholar
  12. S. McCormick and J. Ruge. Unigrid for multigrid simulation. Math. Comp., 41:43–62, 1986.MathSciNetCrossRefGoogle Scholar
  13. S. McCormick and J. Thomas. The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comp., 46(174):439–456, 1986.MathSciNetCrossRefGoogle Scholar
  14. V. Nefedov and R. M. M. Mattheij. Local defect correction with different grid types. Numerical Methods for Partial Differential Equations, 18:454–468, 2002.MathSciNetCrossRefGoogle Scholar
  15. M. D. Smooke. Error estimate for the modified Newton method with applications to the solution of nonlinear, two-point boundary value problems. J. Optim. Theory Appl., 39:489–511, 1983.MATHMathSciNetCrossRefGoogle Scholar
  16. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34(4):581–613, December 1992.MATHMathSciNetCrossRefGoogle Scholar
  17. J. Xu and A. Zhou. Some local and parallel properties of finite element discretizations. In C.-H. Lai, P. E. Bjørstad, M. Cross, and O. B. Widlund, editors, Eleventh International Conference on Domain Decomposition Methods, pages 140–147, Bergen, 1999. Domain Decomposition Press.Google Scholar
  18. J. Xu and A. Zhou. Local and parallel finite element algorithms based on two-grid discretizations. Mathematics of Computation, 69(231):881–909, 2000.MathSciNetCrossRefGoogle Scholar
  19. J. Xu and A. Zhou. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Advances in Computational Mathematics, 14(4):293–327, 2001.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martijn Anthonissen
    • 1
  1. 1.Scientific Computing GroupTechnische Universiteit EindhovenEindhoven

Personalised recommendations