Animal Models of Inflammatory Bowel Diseases

  • M. F. Neurath
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 50)


Inflammatory Bowel Disease Lamina Propria Ulcerative Colitis Patient Experimental Colitis Chronic Intestinal Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atreya R, Mudter J, Finotto S, et al (2000) Blockade of IL-6 trans-signaling suppresses T cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn’s disease and experimental colitis in vivo. Nat Med 6:583–588PubMedCrossRefGoogle Scholar
  2. Boirivant M, Fuss IJ, Chu A, Strober W (1998) Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin-4. J Exp Med 188:1929–1939PubMedCrossRefGoogle Scholar
  3. Christ AD, Stevens AC, Koeppen H, Walsh S, Omata F, Devergne O, Birkenbach M, Blumberg RS (1998) An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn’s disease. Gastroenterology 115:307–313PubMedCrossRefGoogle Scholar
  4. Duchmann R, Zeitz M (1998) Crohn’s disease. In: Ogra P, Strober W (eds) Handbook of mucosal immunology. Academic Press, New YorkGoogle Scholar
  5. Elson CO (2002) Genes, microbes, and T cells — new therapeutic targets in Crohn’s disease. New Engl J Med 346:614–616PubMedCrossRefGoogle Scholar
  6. Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRefGoogle Scholar
  7. Emmrich J, Seyfarth M, Fleig W, Emmrich F (1991) Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody. Lancet 338: 570–571PubMedCrossRefGoogle Scholar
  8. Fuss I, Neurath MF, Boirivant M, Klein JS, Motte CD, Strong SA, Fiocchi C, Strober W (1996) Disparate CD4+ lamina propria (LP) lymphocyte secretion profiles in inflammatory bowel disease. J Immunol 157:1261–1270PubMedGoogle Scholar
  9. Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W (1999) Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 117:1078–1088PubMedCrossRefGoogle Scholar
  10. Hove TT, Montfrans CV, Peppelenbosch MP, Deventer SJv (2002) Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50:206–211PubMedCrossRefGoogle Scholar
  11. Kuhn R, Lohler J, Rennick D, Rajewsky K, Mueller W (1993) Interleukin-10 deficient mice develop chronic enterocolitis. Cell 75:263–274PubMedCrossRefGoogle Scholar
  12. Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK (1996) Role of appendix in the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med 184:707–715PubMedCrossRefGoogle Scholar
  13. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK (1997) The suppressive role of B cells in chronic colitis of T cell receptor α mutant mice. J Exp Med 186:1749–1756PubMedCrossRefGoogle Scholar
  14. Mizoguchi A, Mizoguchi E, Bhan AK (1999) The critical role for interleukin-4 but not interferon-γ in the pathogenesis of colitis in T-cell receptor α mutant mice. Gastroenterology 116:320–326PubMedCrossRefGoogle Scholar
  15. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F (1997) Interleukin-12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112:1169–1178PubMedCrossRefGoogle Scholar
  16. Monteleone G, MacDonald TT, Wathen NC, Pallone F, Pender SL (1999) Enhancing Lamina propria Th1 cell responses with interleukin 12 produces severe tissue injury. Gastroenterology 117:1069–1077PubMedCrossRefGoogle Scholar
  17. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W (1995) Antibodies to IL-12 abrogate established experimental colitis in mice. J Exp Med 182:1280–1289CrossRefGoogle Scholar
  18. Neurath MF, Duchmann R, Büschenfelde KHMz (1996) Zytokine bei chronisch entzündlichen Darmerkrankungen. DMW 121:735–741Google Scholar
  19. Neurath MF, Finotto S, Strober W (2001) Immunology of inflammatory bowel disease. Chap. 87: Clinical Immunology, 2nd edn. In pressGoogle Scholar
  20. Neurath MF, Finotto S, Glimcher LH (2002a) The role of Th1/Th2 polarization in mucosal immunity. Nat Med 8:567–573PubMedCrossRefGoogle Scholar
  21. Neurath MF, Weigmann B, Finotto S, et al (2002b) The transcription factor T-β regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 195:1129–1143PubMedCrossRefGoogle Scholar
  22. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar to as well as distinct from IL-12. Immunity 13(5):715–725PubMedCrossRefGoogle Scholar
  23. Podolsky DK (1991) Inflammatory bowel disease. New Engl J Med 325: 928–937PubMedCrossRefGoogle Scholar
  24. Powrie F, Maloy KJ (2003) Regulating the regulators. Science 299:1030–1031PubMedCrossRefGoogle Scholar
  25. Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL (1994) Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 2:553–562CrossRefGoogle Scholar
  26. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL (1996) A critical role for transforming growth factor-β but not interleukin-4 in the suppression of T helper type 1-mediated colitis by CD45Rb(low) CD4+ T cells. J Exp Med 183:2669–2674PubMedCrossRefGoogle Scholar
  27. Schunk K, Kern A, Oberholzer K, Kalden P, Orth T, Mayer I, Wanitschke R (2000) Hydro-MRI in Crohn’s disease: Appraisal of disease activity. Invest Radiol 35:431–437PubMedCrossRefGoogle Scholar
  28. Simpson SJ, Shah S, Comiskey M, de-Jong VP, Wang B, Mizoguchi E, Bhan AK, Terhorst C (1998) T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon γ expression by T cells. J Exp Med 187:1225–1234PubMedCrossRefGoogle Scholar
  29. Spencer DM, Veldman GM, Banerjee S, Willis J, Levine AD (2002) Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 122:94–105PubMedCrossRefGoogle Scholar
  30. Strober W, Neurath MF (1995) Immunological diseases of the gastrointestinal tract. In: Rich RR (ed) Clinical immunology, Chap. 94. Mosby, St. Louis, pp 1401–1428Google Scholar
  31. Strober W, Kelsall B, Fuss I, Marth T, Ludviksson B, Ehrhardt R, Neurath MF (1997) Reciprocal IFN-γ and TGF-β responses regulate the occurrence of mucosal inflammation. Immunol Today 18:61–64PubMedCrossRefGoogle Scholar
  32. Stüber E, Strober W, Neurath MF (1996) Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of Th1-T cells through the inhibition of IL-12 secretion. J Exp Med 183:693–698PubMedCrossRefGoogle Scholar
  33. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669PubMedCrossRefGoogle Scholar
  34. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH (2002) T-bet is essential for Th1 lineage commitment and IFN-γ production in CD4 but not CD8 T Cell. Sci 295:338–342CrossRefGoogle Scholar
  35. Targan SR, Hanauer SB, Deventer SJV, Mayer L, Present DH, Braakman T, Woody KLD, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s disease. New Engl J Med 337:1029–1035PubMedCrossRefGoogle Scholar
  36. Wirtz S, Neurath MF (2000) Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int J Colorectal Dis 15:144–160PubMedCrossRefGoogle Scholar
  37. Wirtz S, Finotto S, Kanzler S, Lohse AW, Blessing M, Lehr HA, Galle PR, Neurath MF (1999) Cutting Edge: Chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF-plus IFN-γ producing CD4+ T cells that respond to bacterial antigens. J Immunol 162:1884–1888PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. F. Neurath
    • 1
  1. 1.Laboratory of Immunology I, Medical ClinicUniversity of MainzMainzGermany

Personalised recommendations