Animal Models of Experimental Asthma

  • M. Wegmann
  • H. Renz
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 50)

4.5 Conclusions

Animal models which mimic the hallmarks of human bronchial asthma are urgently needed. Such models provide important insight into the pathophysiology of the disease. However, the phenotype of such models must be carefully assessed. Most of the models currently available reflect the stage of acute asthmatic responses with airway inflammation, airway hyperresponsiveness, and sometimes mucus production. However, bronchial asthma represents a chronic disease with chronic and persistent airway inflammation, involvement of the smaller airways, structural changes within and beneath mucosal tissues, and persistent airway obstruction. Advances have been made in further developing models which mimic this phenotype much more closely. These models are particularly relevant in terms of developing novel therapeutic approaches for immuno-intervention in this complex disease. In the future it will be necessary to develop preventive strategies as well as strategies which specifically and sufficiently interfere in structural changes of the airways, since none of the currently available therapies are able to prevent or stop the beginning of airway remodeling.


Airway Inflammation Respir Crit Small Airway Airway Hyperresponsiveness Airway Remodel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarie Y (1966) Irritating properties of airborne materials to the upper respiratory tract. Arch Environ Health 13:433–449PubMedGoogle Scholar
  2. Ambdur M, Mead J (1958) Mechanics of respiration in unanesthetized guinea-pigs. Am J Physiol 192:364–368Google Scholar
  3. Beasley R, Roche WR, Roberts JA, et al (1989) Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis 139:806–817PubMedGoogle Scholar
  4. Boggs D (1992) Comparative control of respiration. In Parent RA, Comparative biology of the normal lung. CRC Press, Boca Raton, pp 309–351Google Scholar
  5. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039PubMedGoogle Scholar
  6. Bradding P (1996) Human mast cell cytokines. Clin Exp Allergy 26:13–19PubMedCrossRefGoogle Scholar
  7. Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, Lewin GR, Renz H (1999) Cellular sources of enhanced brain-derived neurotrophic factor (BDNF) production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 21:537–546PubMedGoogle Scholar
  8. von Bubnoff D, Novak N, Kraft S, Bieber T (2003) The central role of FcɛRI in allergy. Clin Exp Dermatol 28:184–187CrossRefGoogle Scholar
  9. Busse WW, Sedgwick JB (1994) Eosinophil eicosanoid relations in allergic inflammation of the airways. Adv Prostaglandin Thromboxane Leukot Res 22:241–249PubMedGoogle Scholar
  10. Clutterbuck EJ, Sanderson CJ (1998) Human eosinophil hematopiesis studied in vitro by means of murine eosinophil differentiation factor (IL-5): production of functionally active eosinophils from normal human bone marrow. BMJ 71:646–651Google Scholar
  11. Collins DS, Dupuis GJ, Gleich KR, Bartemes KR, Koh YY, Pollice M, Albertine KH, Fish JE, Peters SP (1993) Immunoglobulin E-mediated increase in vascular permeability correlates with eosinophilic inflammation. Am Rev Respir Dis 147:677–683PubMedGoogle Scholar
  12. Cookson W (1999) The alliance of genes and environment in asthma and allergy. Nature 402:B5–11PubMedCrossRefGoogle Scholar
  13. Corrigan CJ, Kay AB (1992) T cells and eosinophils in the pathogenesis of asthma. Immunol Today 13:501–507PubMedCrossRefGoogle Scholar
  14. Corry DB, Grunig G, Hadeiba H, Kurup VP, Warnock ML, Sheppard D, et al (1998) Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med 4:344–355PubMedCrossRefGoogle Scholar
  15. Drazen JM, Arm JP, Austen KF (1996) Sorting out the cytokines of asthma. J Exp Med 183:1–5PubMedCrossRefGoogle Scholar
  16. Eckert R, Randall D (1988) Animal physiology-mechanisms and adaptions. WH Freeman and Company, San Francisco, pp 68–84Google Scholar
  17. Ellis JL, Hubbard WC, Meeker S, et al (1994) Ragweed antigen E and anti-IgE in human central versus peripheral isolated bronchi. Am J Respir Crit Care Med 150:717–723PubMedGoogle Scholar
  18. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, Renz H, Neurath MF (2001) Treatment of allergic airway inflammation and hyperresponsiveness by antisense-in-duced local blockade of GATA-3 expression. J Exp Med 193:1247–1260PubMedCrossRefGoogle Scholar
  19. Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB (2003) Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112(7):1029–1036PubMedGoogle Scholar
  20. Foster H (1983) The mouse in biomedical research, Vol III. Academic PressGoogle Scholar
  21. Foster PS, Hogan SP, Ramsay EJ, Matthaei KI, Young IG (1996) Interleu-kin-5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201PubMedCrossRefGoogle Scholar
  22. Gavett SH, Chen X, Finkelman F, Wills-Karp M (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10:587–593PubMedGoogle Scholar
  23. Glaab T, Daser A, Braun Steinmetz-Neuhaus U, Fabel H, Alarie Y, Renz H (2001) Tidal midexpiratory flow as a measure of airway hyperresponsiveness in allergic mice. Am J Physiol Lung Cell Mol 280:L565–573Google Scholar
  24. Gleich GJ, Adolphson CR, Leiferman KM (1993) The biology of the eosinophilic leukocyte. Annu Rev Med 44:85–101PubMedCrossRefGoogle Scholar
  25. Haley KJ, Sunday ME, Wiggs BR, Kozakewich HP, Reilly JJ, Mentzer SJ, Sugarbaker DJ, Doerschuk CM, Drazen JM (1998) Inflammatory cell distribution within and along asthmatic airways. Am J Respir Crit Care Med 158:565–572PubMedGoogle Scholar
  26. Hamelmann E, et al (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156:766–775PubMedGoogle Scholar
  27. Hegele RG, Hogg JC (1996) The pathology of asthma: an inflammatory disorder. In: Szefler SJ, Leung DYM (eds) Severe asthma: pathogenesis and clinical management. Marcel Dekker, New York, pp 61–76Google Scholar
  28. Hertz M, Mahalingam S, Dalum I, Klysner S, Mattes J, Neisig A, Mouritsen S, Foster PJ, Gautam A (2001) Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma. J Immunol 167:3792–3799PubMedGoogle Scholar
  29. Hogan SP, Mould A, Kikutani H, Ramsay AJ, Foster PS (1997) Aeroaller-gen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest 99:1329–1339PubMedCrossRefGoogle Scholar
  30. Hogan SP, Koskinen A, Matthaei KI, Young IG, Foster PS (1998a) Interleu-kin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 157:210–218PubMedGoogle Scholar
  31. Hogan SP, Mathtaei KI, Young JM, Koskinen A, Young IG, Foster PS (1998b) A novel T cell-regulated mechanism modulating allergen-induced hyperreactivity in BLAB/c mice independently of IL-4 and IL-5. J Immunol 161:1501–1509PubMedGoogle Scholar
  32. Hogg JC (1993) The pathology of asthma. In: Holgate ST, Austen KF, Lich-tenstein LM, et al (eds) Asthma: physiology, immunopharmacology and treatment. Academic Press, London, pp 17–25Google Scholar
  33. Holz O, Jorres RA, Magnussen H (2000) Monitoring central and peripheral airway inflammation in asthma. Respir Med 94:S7–12PubMedGoogle Scholar
  34. Izuhara K, Arima K, Yasunaga S (2002) IL-4 and IL-13: their pathological roles in allergic diseases and their potential in developing new therapies. Curr Drug Targets Inflamm Allergy 1:263–269PubMedCrossRefGoogle Scholar
  35. James AL, Pare PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139:242–246PubMedGoogle Scholar
  36. Kaminuma O, Mori A, Ogawa K, Nakata A, Kikkawa H, Naito K, Suko M, Okudaira H (1997) Successful transfer of late phase eosinophil infiltration in the lung by infusion of helper T cell clones. Am J Respir Cell Mol Bid 16:448–454Google Scholar
  37. Kanehiro A, Ikemura T, Makela MJ, Lahn M, Joetham A, Dakhama A, Gelfand EW (2001) Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am J Respir Crit Care Med 163:173–184PubMedGoogle Scholar
  38. Kenyon NJ, Ward RW, Last JA (2003) Airway fibrosis in a mouse model of airway inflammation. Toxicol Appl Pharmacol 186:90–100PubMedCrossRefGoogle Scholar
  39. Kerzel S, Päth G, Nockher WA, Quarcoo D, Raap U, Groneberg DA, Thai Dinh Q, Fischer A, Braun A, Renz H (2003) Pan-Neurotrophin Receptor p75 contributes to neuronal hyperreactivity and airway inflammation in a murine model of experimental asthma. Am J Respir Cell Mol Biol 28:170–178PubMedCrossRefGoogle Scholar
  40. Kinet JP (1990) The high-affinity receptor for immunoglobulin E. Curr Opin Immunol 2:499–505CrossRefGoogle Scholar
  41. Korsgren M, Erjefalt JS, Korsgren O, Sundler F, Persson CG (1997) Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J Exp Med 185:885–892PubMedCrossRefGoogle Scholar
  42. Kraft M (1999) The distal airways: are they important in asthma? Eur Respir J 14:1403–1417PubMedCrossRefGoogle Scholar
  43. Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, et al (1997) Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomic of asthma. J Exp Med 185:2143–2156PubMedCrossRefGoogle Scholar
  44. Leff AR (1994) Inflammatory mediation of airway hyperresponsiveness by peripheral blood granulocytes: the case for the eosinophil. Chest 106:1202–1208PubMedCrossRefGoogle Scholar
  45. Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:219–224PubMedCrossRefGoogle Scholar
  46. Lungarella G, Menegazzi R, Gardi C, Spessotto M, de Santi M, Bertocin P, Patriarca P, Calzoni P Zabucchi G (1992) Identification of elastase in human eosinophils: immunolocalization, isolation, and partial characterization. Arch Biochem Biophys 292:128–135PubMedCrossRefGoogle Scholar
  47. Marthur M, Herrmann K, Li X, Qin Y, Weinstock J, Elliott D, et al (1999) TRFK-5 reverses established airway eosinophilia but not established hyperresponsiveness in a murine model of chronic asthma. Am J Respir Crit Care Med 159:580–587Google Scholar
  48. Neuhaus-Steinmetz U, Glaab T, Daser A, Braun A, Lommatzsch M, Herz U, Kips J, Alarie Y, Renz H. (2000) Sequential development of airway hyperresponsiveness and acute airway obstruction in a mouse model of allergic inflammation. Int Arch Allergy Immunol 121(l):57–67PubMedCrossRefGoogle Scholar
  49. Oh SW, Pae CI, Lee DK, Jones F, Chiang GK, Kim HO, Moon SH, Cao B, Ogbu C, Jeong KW, Kozu G, Nakanishi H, Kahn M, Chi EY, Henderson WR (2002) Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol 168:1992–2000PubMedGoogle Scholar
  50. Ohno I, Lea RG, Flanders KC, Clark DA, Banwatt D, Dolovich J, Denburg J, Harley CB, Gauldie J, Jordana M (1992) Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1). J Clin Invest 89:1662–1668PubMedCrossRefGoogle Scholar
  51. Palmans E, Kips JC, Pauwels RA (2000) Prolonged allergen exposure induces structural airway changes in sensitized rats. Am J Respir Crit Care Med 161:627–635PubMedGoogle Scholar
  52. Päth G, Braun A, Meents N, Kerzel S, Raap U, Hoyle GW, Nockher WA, Renz H (2002) Augmentation of allergic early-phase reaction by Nerve Growth Factor (NGF). Am J Respir Crit Care Med 166:818–826PubMedCrossRefGoogle Scholar
  53. Rabe KF, Munoz NM, Vita AJ, Morton BE, Magnussen H, Leff AR (1994) Contraction of human bronchial smooth muscle caused by activated human eosinophils. Am J Physiol 267:L326–334PubMedGoogle Scholar
  54. Renz H, Smith HR, Henson JE, Ray BS, Irvin CG, Gelfand EW (1992) Aerosolized antigen exposure without adjuvant causes increased IgE production and airways hyperresponsiveness in the mouse. J All Clin Immunol 89:1127–1138CrossRefGoogle Scholar
  55. Renz H, Or R, Domenico J, Leung DYM, Gelfand EW (1992) Reciprocal regulatory effects of IL-4 on cell growth and immunoglobulin production in Ig-secreting human B-cell lines. Clin Immunol Immunopathol 64:233–241PubMedCrossRefGoogle Scholar
  56. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB (1992) Predominant TH2-like broncho-alveolar T-lymphocyte population in atopic asthma. N Engl J Med 326: 298–304PubMedGoogle Scholar
  57. Sakai K, Yokohama A, Kouno N, Hamada H, Hiwada K (2001) Prolonged antigen exposure ameliorates airway inflammation but not remodelling in a mouse model of bronchial asthma. Int Arch Allergy Immunol 126:126–134PubMedCrossRefGoogle Scholar
  58. Sanderson CJ (1988) Interleukin-5: an eosinophil growth and activation factor. Dev Biol Stand 69:23–29PubMedGoogle Scholar
  59. Sanderson CJ (1990) The biological role of interleukin 5. Int J Cell Cloning 8:147–153PubMedCrossRefGoogle Scholar
  60. Shi HZ, Xiao CQ, Zhong D, Qin SM, Liu Y, Liang GR, Xu H, Chen YQ, Long XM, Xie ZF (1998) Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 157:204–209PubMedGoogle Scholar
  61. Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF (2000) Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest 105:945–953PubMedCrossRefGoogle Scholar
  62. Temelkowski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK (1998) An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 53:849–856CrossRefGoogle Scholar
  63. Vignola AM, Chanez P, Campbell AM, Souques F, Lebel B, Enander I, Bousquet J (1998) Airway inflammation in mild intermittent and in persistent asthma. Am J Respir Crit Care Med 157:403–440PubMedGoogle Scholar
  64. Vijayaraghanavan R, Schaper M, Thompson R, Stock MF, Alarie Y (1993) Characteristic modifications of the breathing pattern of mice to evaluate the effects of airborne chemicals on the respiratory tract. Arch Toxicol 67:478–490CrossRefGoogle Scholar
  65. Wagner EM, Bleecker ER, Permutt S, et al (1998) Direct assessment of small airways reactivity in human subjects. Am J Respir Crit Care Med 157:447–452PubMedGoogle Scholar
  66. Walker C, Bauer W, Braun RK, Menz G, Braun P, Schwarz F, Hansel TT, Villiger B (1994) Activated T cells and cytokines in bronchoalveolar lavages from patients with various lung diseases associated with eosinophilia. Am J Respir Crit Care Med 150:1038–1048PubMedGoogle Scholar
  67. Walz TM, Nishikawa BK, Malm C, Wasteson A (1993) Production of transforming growth factor alpha by normal human blood eosinophils. Leukemia 7:1531–1537PubMedGoogle Scholar
  68. Wang JM, Rambaldi A, Biondi A, Chen ZG, Sanderson CJ, Mantovani A (1989) Recombinant human interleukin 5 is a selective eosinophil chemoattractant. Eur J Immunol 19:701–705PubMedCrossRefGoogle Scholar
  69. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261PubMedCrossRefGoogle Scholar
  70. Yanai M, Sekizawa K, Ohrui T, et al (1992) Site of airway obstruction in pulmonary disease; direct measurement of intrabronchial pressure. J Appl Physiol 72:1016–1023PubMedGoogle Scholar
  71. Ying S, Durham SR, Corrigan CJ, Hamid Q, Kay AB (1995) Phenotype of cells expressing mRNA for Th2-type (interleukin 4 and interleukin 5) and Thl-type (interleukin 2 and interferon gamma) cytokines in broncho-alveolar lavage and bronchial biopsies from atopic asthmatics and normal control subjects. Am J Respir Cell Mol Biol 12:477–487PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Wegmann
    • 1
  • H. Renz
    • 1
  1. 1.Department of Clnical Chemistry and Molecular DiagnosticsHospital of the Philipps-UniversityMarburgGermany

Personalised recommendations