Imaging of Proteases for Tumor Detection and Differentiation

  • C. Bremer
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 49)


Optical Probe Tumor Detection Molecular Beacon Diffuse Optical Tomography Target Contrast Agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aparicio T, Kermorgant S, Dessirier V, Lewin MJ, Lehy T (1999) Matrix metalloproteinase inhibition prevents colon cancer peritoneal carcinomatosis development and prolongs survival in rats. Carcinogenesis 20:1445–1451PubMedCrossRefGoogle Scholar
  2. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19:327–331PubMedCrossRefGoogle Scholar
  3. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748PubMedCrossRefGoogle Scholar
  4. Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH (2001 a) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221:523–529PubMedCrossRefGoogle Scholar
  5. Bremer C, Tung CH, Bogdanov A, Jr, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222:814–818PubMedCrossRefGoogle Scholar
  6. Bremer C, Ntziachristos V, Weissleder R (2003b) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243PubMedGoogle Scholar
  7. Campo E, Munoz J, Miquel R, Palacin A, Cardesa A, Sloane BF, Emmert-Buck MR (1994) Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol 145:301–309PubMedGoogle Scholar
  8. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771PubMedCrossRefGoogle Scholar
  9. Davidson B, Goldberg I, Kopolovic J, Lerner-Geva L, Gotlieb WH, Ben-Baruch G, Reich R (1999) MMP-2 and TIMP-2 expression correlates with poor prognosis in cervical carcinoma — a clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol 73:372–382PubMedCrossRefGoogle Scholar
  10. Edwards DR, Murphy G (1998) Cancer. Proteases — invasion and more. Nature 394:527–528PubMedCrossRefGoogle Scholar
  11. Emmert-Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Sloane BF, Liotta LA, Stetler-Stevenson WG (1994) Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol 145:1285–1290PubMedGoogle Scholar
  12. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97:3884–3889PubMedCrossRefGoogle Scholar
  13. Folkman J (1999) Angiogenic zip code. Nat Biotechnol 17:749PubMedCrossRefGoogle Scholar
  14. Herszenyi L, Plebani M, Carraro P, De Paoli M, Roveroni G, Cardin R, Tulassay Z, Naccarato R, Farinati F (1999) The role of cysteine and serine proteases in colorectal carcinoma. Cancer 86:1135–1142PubMedCrossRefGoogle Scholar
  15. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carroll MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168PubMedCrossRefGoogle Scholar
  16. Kanayama H, Yokota K, Kurokawa Y, Murakami Y, Nishitani M, Kagawa S (1998) Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer. Cancer 82:1359–1366PubMedCrossRefGoogle Scholar
  17. Khan A, Krishna M, Baker SP, Banner BF (1998a) Cathepsin B and tumor-associated laminin expression in the progression of colorectal adenoma to carcinoma. Mod Pathol 11:704–708PubMedGoogle Scholar
  18. Khan A, Krishna M, Baker SP, Malhothra R, Banner BF (1998b) Cathepsin B expression and its correlation with tumor-associated laminin and tumor progression in gastric cancer. Arch Pathol Lab Med 122:172–177PubMedGoogle Scholar
  19. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291:113–135PubMedCrossRefGoogle Scholar
  20. Kuniyasu H, Ellis LM, Evans DB, Abbruzzese JL, Fenoglio CJ, Bucana CD, Cleary KR, Tahara E, Fidler IJ (1999) Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin Cancer Res 5:25–33PubMedGoogle Scholar
  21. Licha K, Riefke B, Ebert B, Grotzinger C (2002) Cyanine dyes as contrast agents in biomedical optical imaging. Acad Radiol 9[Suppl 2]:S320–322PubMedCrossRefGoogle Scholar
  22. Mahmood U, Tung CH, Bogdanov A, Jr, Weissleder R (1999) Near-infrared optical imaging of protease activity for tumor detection. Radiology 213: 866–870PubMedGoogle Scholar
  23. Marten K, Bremer C, Khazaie K, Sameni M, Sloane B, Tung CH, Weissleder R (2002) Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterol 122:406–414CrossRefGoogle Scholar
  24. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84:44–48PubMedCrossRefGoogle Scholar
  25. Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE (1996) Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2:461–462PubMedCrossRefGoogle Scholar
  26. Ntziachristos V, Weissleder R (2001) Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Optics Lett 26:893–895CrossRefGoogle Scholar
  27. Ntziachristos V, Tung C, Bremer C, Weissleder R (2001) Fluorescence-mediated tomography resolves protease activity in vivo. Nat Med 8:757–760CrossRefGoogle Scholar
  28. Ntziachristos V, Bremer C, Weissleder R (2002a) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208PubMedGoogle Scholar
  29. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002b) In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1:82–88PubMedCrossRefGoogle Scholar
  30. Ntziachristos V, Ripoll J, Weissleder R (2002c) Would near-infrared fluorescence signals propagate through large human organs for clinical studies. Optics Lett 27:527–529CrossRefGoogle Scholar
  31. Sakakibara M, Koizumi S, Saikawa Y, Wada H, Ichihara T, Sato H, Horita S, Mugishima H, Kaneko Y, Koike K (1999) Membrane-type matrix metalloproteinase-1 expression and activation of gelatinase A as prognostic markers in advanced pediatric neuroblastoma. Cancer 85:231–239PubMedCrossRefGoogle Scholar
  32. Tung CH, Gerszten RE, Jaffer FA, Weissleder R (2002) A novel near-infrared fluorescence sensor for detection of thrombin activation in blood. Chembiochem 3:207–211PubMedCrossRefGoogle Scholar
  33. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317PubMedCrossRefGoogle Scholar
  34. Weissleder R, Tung CH, Mahmood U, Bogdanov A, Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Bremer
    • 1
  1. 1.Münster Institut für Klinische RadiologieWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations