Skip to main content

Imaging Protein-Protein Interactions in Whole Cells and Living Animals

  • Conference paper
Molecular Imaging

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 49))

2.4 Conclusions

These studies demonstrate that noninvasive molecular imaging of protein-protein interactions may enable investigators to determine how intrinsic binding specificities of proteins are regulated in a wide variety of normal and pathophysiologic conditions. These tools provide a platform for detection of regulated and small molecule-induced protein-protein interactions in intact cells and living animals and should enable a wide range of novel applications in biomedi-cine, drug discovery, chemical genetics, and proteomics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP 12-rapamycin-binding domain within the 289-kDa FKBP12-ra-pamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92:4947–4951

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749

    Article  PubMed  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interaction. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  • Galarneau A, Primeau M, Trudeau LE, Michnick S (2002) β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein-protein interactions. Nat Biotechnol 20:619–622

    Article  PubMed  CAS  Google Scholar 

  • Heldin C (2001) Signal transduction: multiple pathways, multiple options for therapy. Stem Cells 19:295–303

    Article  PubMed  CAS  Google Scholar 

  • Luker K, Piwnica-Worms D (2004) Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymology 385:349–360

    Article  CAS  Google Scholar 

  • Luker G, Sharma V, Pica C, Dahlheimer J, Li W, Ochesky J, Ryan C, Piwnica-Worms H, Piwnica-Worms D (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci USA 99:6961–6966

    Article  PubMed  CAS  Google Scholar 

  • Luker G, Sharma V, Pica C, Prior J, Li W, Piwnica-Worms D (2003 a) Molecular imaging of protein-protein Interactions: controlled expression of p53 and large T antigen fusion proteins in vivo. Cancer Res 63:1780–1788

    PubMed  CAS  Google Scholar 

  • Luker G, Sharma V, Piwnica-Worms D (2003 b) Visualizing protein-protein interactions in living animals. Methods 29:110–122

    Article  PubMed  CAS  Google Scholar 

  • Luker G, Sharma V, Piwnica-Worms D (2003 c) Noninvasive imaging of protein-protein interactions in living animals. In Conn PM (ed) Handbook of proteomic methods. Humana Press, Inc., Totowa, NJ, pp 283–298

    Chapter  Google Scholar 

  • Ogawa H, Ishiguro S, Gaubatz S, Livingston D, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in GO cells. Science 296:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier M, Nixon A, Shim J, Benkovic S (1999) Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci USA 96: 3562–3567

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Gambhir S (2003) Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Pimenta H, Paulmurugan R, Berger F, Phelps M, Iyer M, Gambhir S (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci USA 99:2105–3110

    Article  CAS  Google Scholar 

  • Remy I, Michnick S (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96:5394–5399

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Wilson I, Michnick S (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283:990–993

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Charlton C, Blau H (1997) Monitoring protein-protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc Natl Acad Sci USA 94:8405–8410

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Blakely B, Blau H (2000) Interaction blues: protein interactions monitored in live mammalian cells by β-galactosidase complementation. Trends Cell Bid 10:119–122

    Article  CAS  Google Scholar 

  • Stark G, Kerr I, Williams B, Silverman R, Schreiber R (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  PubMed  CAS  Google Scholar 

  • Toby G, Golemis E (2001) Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 24:201–217

    Article  PubMed  CAS  Google Scholar 

  • von Mering C, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P (2002) Comparative assessment of large-scale sets of protein-protein interactions. Nature 471:399–403

    Article  CAS  Google Scholar 

  • Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM (2002) Protein-protein interactions monitored in mammalian cells via complementation of β-lactamase enzyme fragments. Proc Natl Acad Sci USA 99:3469–3474

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hu G, Wang H, Sciavolino P, Her N, Shen M, Abate-Shen C (1997) Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 17:2920–2932

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piwnica-Worms, D., Luker, K.E. (2005). Imaging Protein-Protein Interactions in Whole Cells and Living Animals. In: Bogdanov, A.A., Licha, K. (eds) Molecular Imaging. Ernst Schering Research Foundation Workshop, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26809-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26809-X_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21021-4

  • Online ISBN: 978-3-540-26809-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics