Noninvasive Real-Time In Vivo Bloluminescent Imaging of Gene Expression and of Tumor Progression and Metastasis

  • C. W. G. M. Lowik
  • M. G. Cecchini
  • A. Maggi
  • G. van der Pluijm
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 49)

11.6 Conclusions and Future Perspectives

It is clear from the work presented in this chapter and from work by others that BLI is perfectly suited to monitor gene expression in transgenic reporter mice and to detect and follow small numbers of cells noninvasively. As we have shown, it also enables the quantification of tumor cells within internal organs in animal models of cancer. BLI is a powerful tool in functional genomics of cancer development, progression, and metastasis and will allow us to identify in vivo molecular targets of cancer and their metastasis. The application of BLI in combination with new animal models for cancer will allow us to study very rapidly and conveniently the efficacy of new therapeutic approaches such as gene therapy stem cell therapy and antiangiogenic therapy, and when successful can be a first step towards clinical application. Furthermore, the development of new smart luciferase-based reporter constructs as well as new possibilities to create transgenic animals containing these reporter constructs will make noninvasive in vivo BLI also a powerful new tool in other small animal models of human biology and disease.


Bone Metastasis Minimal Residual Disease Skeletal Metastasis Bioluminescent Image Develop Bone Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881PubMedGoogle Scholar
  2. Arguello F, Baggs RB, Graves BT, Harwell SE, Cohen HJ, Frantz CN (1992) Effect of IL-1 on experimental bone/bone-marrow metastases. Int J Cancer 52:802–807PubMedCrossRefGoogle Scholar
  3. Bab IA (1995) Postablation bone marrow regeneration: an in vivo model to study differential regulation of bone formation and resorption. Bone [4 Suppl]:437S–441SGoogle Scholar
  4. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334: 488–493PubMedCrossRefGoogle Scholar
  5. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs M, Blacklock H, Bell R, Simeone JF, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1998) Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 16: 593–602PubMedGoogle Scholar
  6. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382PubMedCrossRefGoogle Scholar
  7. Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57:3890–3894PubMedGoogle Scholar
  8. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60:2949–2954PubMedGoogle Scholar
  9. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedCrossRefGoogle Scholar
  10. Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35:512–516PubMedGoogle Scholar
  11. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446PubMedGoogle Scholar
  12. Ciana P, Di Luccio G, Belcredito S, Pollio G, Vegeto E, Tatangelo L, Tiveron C, Maggi A (2001) Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol 15:1104–1113PubMedCrossRefGoogle Scholar
  13. Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MG, Lowik C, Maggi A (2003) In vivo imaging of transcriptionally active estrogen receptors. Nat Med 9:82–86PubMedCrossRefGoogle Scholar
  14. Clemens TL, Tang H, Maeda S, Kesterson RA, Demayo F, Pike JW, Gundberg CM (1997) Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes. J Bone Miner Res 12:1570–1576PubMedCrossRefGoogle Scholar
  15. Clezardin P, Fournier P, Boissier S, Peyruchaud O (2003) In vitro and in vivo antitumor effects of bisphosphonates. Curr Med Chem 10:173–180PubMedGoogle Scholar
  16. Clohisy DR, Ramnaraine ML (1998) Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res 16:660–666PubMedCrossRefGoogle Scholar
  17. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531PubMedCrossRefGoogle Scholar
  18. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247PubMedCrossRefGoogle Scholar
  19. Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52PubMedCrossRefGoogle Scholar
  20. Conte PF, Latreille J, Mauriac L, Calabresi F, Santos R, Campos D, Bonneterre J, Francini G, Ford JM (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol 14:2552–2559PubMedGoogle Scholar
  21. Desai RK, van Wijnen AJ, Stein JL, Stein GS, Lian JB (1995) Control of 1,25-dihydroxyvitamin D3 receptor-mediated enhancement of osteocalcin gene transcription: effects of perturbing phosphorylation pathways by okadaic acid and staurosporine. Endocrinology 136:5685–5693PubMedCrossRefGoogle Scholar
  22. Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339:357–363PubMedCrossRefGoogle Scholar
  23. Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648PubMedCrossRefGoogle Scholar
  24. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310PubMedCrossRefGoogle Scholar
  25. El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J (2002) Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 82:1563–1571PubMedGoogle Scholar
  26. Elomaa I, Blomqvist C, Grohn P, Porkka L, Kairento AL, Selander K, Lamberg-Allardt C, Holmstrom T (1983) Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1:146–149PubMedCrossRefGoogle Scholar
  27. Eriksen EF, Axelrod DW, Melsen F (1994) Bone histomorphometry. Raven Press, New York, pp 3–12Google Scholar
  28. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782PubMedGoogle Scholar
  29. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, Clezardin P (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6538–6544PubMedGoogle Scholar
  30. Frith JC, Monkkonen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(β,γ-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12:1358–1367PubMedCrossRefGoogle Scholar
  31. Gao CL, Dean RC, Pinto A, Mooneyhan R, Connelly RR, McLeod DG, Srivastava S, Moul JW (1999) Detection of circulating prostate specific antigen expressing prostatic cells in the bone marrow of radical prostatectomy patients by sensitive reverse transcriptase polymerase chain reaction. J Urol 161:1070–1076PubMedCrossRefGoogle Scholar
  32. Green JR (2002) Bisphosphonates in cancer therapy. Curr Opin Oncol 14: 609–615PubMedCrossRefGoogle Scholar
  33. Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206PubMedCrossRefGoogle Scholar
  34. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549PubMedCrossRefGoogle Scholar
  35. Hall DG, Stoica G (1994) Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Miner Res 9:221–230PubMedCrossRefGoogle Scholar
  36. Hardy J, Edinger M, Bachmann MH, Negrin RS, Fathman CG, Contag CH (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29:1353–1360PubMedCrossRefGoogle Scholar
  37. Hashizume T, Kumahara A, Fujino M, Okada K (2002) Insulin-like growth factor I enhances gonadotropin-releasing hormone-stimulated luteinizing hormone release from bovine anterior pituitary cells. Anim Reprod Sci 70:13–21PubMedCrossRefGoogle Scholar
  38. Heikkila P, Teronen O, Moilanen M, Konttinen YT, Hanemaaijer R, Laitinen M, Maisi P, van der Pluijm G, Bartlett JD, Salo T, Sorsa T (2002) Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anticancer Drugs 13:245–254PubMedCrossRefGoogle Scholar
  39. Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61:4418–4424PubMedGoogle Scholar
  40. Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 335:1785–1791PubMedCrossRefGoogle Scholar
  41. Iris B, Zilberman Y, Zeira E, Galun E, Honigman A, Turgeman G, Clemens T, Gazit Z, Gazit D (2003) Molecular imaging of the skeleton: quantitative real-time bioluminescence. J Bone Miner Res 18:570–578PubMedCrossRefGoogle Scholar
  42. Kanis JA, Powles T, Paterson AH, McCloskey EV, Ashley S (1996) Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 19:663–667PubMedCrossRefGoogle Scholar
  43. Kassem M, Okazaki R, Harris SA, Spelsberg TC, Conover CA, Riggs BL (1998) Estrogen effects on insulin-like growth factor gene expression in a human osteoblastic cell line with high levels of estrogen receptor. Calcif Tissue Int 62:60–66PubMedCrossRefGoogle Scholar
  44. Kato S (2001) Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer 8:3–9PubMedCrossRefGoogle Scholar
  45. Klotz DM, Hewitt SC, Ciana P, Raviscioni M, Lindzey JK, Foley J, Maggi A, DiAugustine RP, Korach KS (2002) Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-l)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem 277:8531–8537PubMedCrossRefGoogle Scholar
  46. Kostenuik PJ, Singh G, Suyama KL, Orr FW (1993) Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis 10:411–418CrossRefGoogle Scholar
  47. Lange PH, Vessella RL (1999) Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev 17:331–336CrossRefGoogle Scholar
  48. Lee MV, Fong EM, Singer FR, Guenette RS (2001) Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 61:2602–2608PubMedGoogle Scholar
  49. Lehtonen-Veromaa M, Mottonen T, Kautiainen H, Heinonen OJ, Viikari J (2001) Influence of physical activity and cessation of training on calcaneal quantitative ultrasound measurements in peripubertal girls: a 1-year prospective study. Calcif Tissue Int 68:146–150PubMedCrossRefGoogle Scholar
  50. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13:581–589PubMedCrossRefGoogle Scholar
  51. Mandl S, Schimmelpfennig C, Edinger M, Negrin RS, Contag CH (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem [Suppl] 39:239–248CrossRefGoogle Scholar
  52. Mansi JL, Berger U, Easton D, McDonnell T, Redding WH, Gazet JC, McKinna A, Powles TJ, Coombes RC (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J (Clin Res Ed) 295:1093–1096CrossRefGoogle Scholar
  53. Melchior SW, Corey E, Ellis WJ, Ross AA, Layton TJ, Oswin MM, Lange PH, Vessella RL (1997) Early tumor cell dissemination in patients with clinically localized carcinoma of the prostate. Clin Cancer Res 3:249–256PubMedGoogle Scholar
  54. Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087PubMedCrossRefGoogle Scholar
  55. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  56. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRefGoogle Scholar
  57. Mundy GR, Yoneda T (1996) Mechanisms of bone metastasis. In: Orr FW, Singh G (eds) Bone metastasis — mechanisms and pathophysiology. Springer, Berlin Heidelberg New York, pp 1–16Google Scholar
  58. Ohtsuka M, Shinoda H (1995) Ontogeny of circadian dentinogenesis in the rat incisor. Arch Oral Bid 40:481–485CrossRefGoogle Scholar
  59. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  60. Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424PubMedCrossRefGoogle Scholar
  61. Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, Mannisto E, Suovuori A, Atula S, Nevalainen J, Pylkkanen L (2002) Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 20:3219–3224PubMedCrossRefGoogle Scholar
  62. Rodan GA (1998) Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 38:375–388PubMedCrossRefGoogle Scholar
  63. Russell RG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, Croucher PI, Shipman C, Fleisch HA (1999) The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res 14[Suppl 2]:53–65PubMedGoogle Scholar
  64. Saarto T, Blomqvist C, Virkkunen P, Elomaa I (2001) Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in nodepositive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 19:10–17PubMedGoogle Scholar
  65. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557PubMedGoogle Scholar
  66. Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82:1459–1468PubMedGoogle Scholar
  67. Shingo AS, Kito S (2003) Estrogen induces insulin-like growth factor-1 mRNA expression in the immortalized hippocampal cell: determination by quantitative real-time polymerase chain reaction. Neurochem Res 28: 1379–1383PubMedCrossRefGoogle Scholar
  68. Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel antitumor activity. Br J Haematol 98:665–672PubMedCrossRefGoogle Scholar
  69. Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049PubMedCrossRefGoogle Scholar
  70. Teronen O, Heikkila P, Konttinen YT, Laitinen M, Salo T, Hanemaaijer R, Teronen A, Maisi P, Sorsa T (1999) MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci 878:453–465PubMedCrossRefGoogle Scholar
  71. van Beek E, Lowik C, van der Pluijm G, Papapoulos S (1999a) The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 14:722–729CrossRefGoogle Scholar
  72. van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999b) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264:108–111PubMedCrossRefGoogle Scholar
  73. van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98:698–705PubMedCrossRefGoogle Scholar
  74. van der Pluijm G, Lowik C, Papapoulos S (2000) Tumor progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev 26:11–27PubMedCrossRefGoogle Scholar
  75. van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C (2001) Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 16:1077–1091PubMedCrossRefGoogle Scholar
  76. van der Pluijm G, Karperien M, Löwik CWGM, Wetterwald A, Thalmann GN, Cecchini MG (2002a) Whole body optical imaging of bone turnover and skeletal metastases: pathogenic relationship and therapeutic rationale (abstract). Clin Exp Metastasis 19:T–11Google Scholar
  77. van der Pluijm G, Sijmons B, Que I, Buijs J, Cecchini M, Löwik C, Papapoulos S (2002b) Monitoring progression of breast cancer cells in bone/ bone marrow by optical imaging: bisphosphonates do not suppress tumor growth rate and tumor burden (abstract). J Bone Miner Res 17:1091Google Scholar
  78. van Holten-Verzantvoort AT, Kroon HM, Bijvoet OL, Cleton FJ, Beex LV, Blijham G, Hermans J, Neijt JP, Papapoulos SE, Sleeboom HP, et al. (1993) Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 11:491–498PubMedGoogle Scholar
  79. van Holten-Verzantvoort AT, Hermans J, Beex LV, Blijham G, Cleton FJ, van Eck-Smit BC, Sleeboom HP, Papapoulos SE (1996) Does supportive pamidronate treatment prevent or delay the first manifestation of bone metastases in breast cancer patients? Eur J Cancer 32A:450–454PubMedCrossRefGoogle Scholar
  80. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Lowik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153PubMedGoogle Scholar
  81. Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM, Castronovo V, Green JR (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302:1055–1061PubMedCrossRefGoogle Scholar
  82. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206PubMedCrossRefGoogle Scholar
  83. Young M (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14[Suppl 3]:S35–42PubMedGoogle Scholar
  84. Zhang N, Fang Z, Contag PR, Purchio AF, West DB (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103:617–626PubMedCrossRefGoogle Scholar
  85. Zhang W, Feng JQ, Harris SE, Contag PR, Stevenson DK, Contag CH (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res 10:423–434PubMedCrossRefGoogle Scholar
  86. Zhang W, Purchio AF, Chen K, Wu J, Lu L, Coffee R, Contag PR, West DB (2003) A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Me-tab Dispos 8:1054–1064CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. W. G. M. Lowik
    • 1
  • M. G. Cecchini
    • 2
  • A. Maggi
    • 3
  • G. van der Pluijm
    • 1
  1. 1.Department of Endocrinology, Building 1C4-R86 Leiden University Medical CenterLeidenThe Netherlands
  2. 2.Urology Research Laboratory, Department of Urology and Department of Clinical ResearchUniversity of Bern, MEM C813BernSwitzerland
  3. 3.Department of Pharmacological Sciences and Center of Excellence on Neurogenerative DiseaseUniversity of MilanItaly

Personalised recommendations