Advertisement

Constrained Multiresolution Geometric Modelling

  • Stefanie Hahmann
  • Gershon Elber
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

This paper surveys the state-of-the-art of geometric modelling techniques that integrate constraints, including direct shape manipulation, physics-based modelling, solid modelling and freeform deformations as well as implicit surface modelling. In particular, it focuses on recent advances of multiresolution modelling of shapes under constraints.

Keywords

Control Point Implicit Surface Subdivision Surface Area Constraint Tensor Product Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barghiel C., Bartels R., Forsey D.: Pasting Spline Surfaces. In Daehlen M., Lyche T., Schumaker L.L. (eds.), Mathematical Methods for Curves and Surfaces, Ulvik, Vanderbilt University Press, 31–40 (1999).Google Scholar
  2. 2.
    Bartels, R., Beatty, J.: A technique for the direct manipulation of spline curves. In Graphics Interface Conference Proceedings '89, 33–39 (1989).Google Scholar
  3. 3.
    Bidarra R., Bronsvoort W.F.: Semantic feature modelling. Computer Aided Design 32, 201–225 (2000).CrossRefGoogle Scholar
  4. 4.
    Biermann H., Kristjansson D., Zorin D.: Approximate Boolean Operations on Free-form Solids. In Proc. ACM SIGGRAPH. Los Angeles, 185–194 (2001).Google Scholar
  5. 5.
    Biermann H., Martin I.M., Zorin D., Bernardini F.: Sharp Features on Subdivision Surfaces. In Pacific Graphics Conference Proceedings. Tokyo, Japan (2001).Google Scholar
  6. 6.
    Biermann H., Martin I.M., Bernardini F., Zorin D.: Cut-and-Paste Editing of Multiresolution surfaces. In Proc. ACM SIGGRAPH, 187–196 (2002).Google Scholar
  7. 7.
    Bloomenthal J., Shoemake K.: Convolution surfaces. In Proc. ACM SIGGRAPH, Las Vegas, Nevada, (1991).Google Scholar
  8. 8.
    Bloomenthal J. (editor): Introduction to Implicit Surfaces. Morgan Kaufmann (1997).Google Scholar
  9. 9.
    Bonneau G.P., Hagen H.: Variational design of rational Bézier curves and surfaces. In Laurent P.J., Le Méhauté A., Schumaker L.L. (eds.) Curves and Surfaces II, 51–58 (1994).Google Scholar
  10. 10.
    Bonneau G.-P., Hahmann S., Nielson G.: Blac-wavelets: a multiresolution analysis with non-nested spaces. In Visualization Conference Proceedings, 43–48 (1996).Google Scholar
  11. 11.
    Bonneau G.-P.: Multiresolution analysis on Irregular Surface Meshes. IEEE Transactions on Visualization and Computer Graphics, 4, 365–378 (1998).CrossRefGoogle Scholar
  12. 12.
    Borel P., Rappoport A.: Simple constrained deformations for geometric modeling and interactive design. ACM Transactions on Graphics, 13(2), 137–155 (1994).CrossRefGoogle Scholar
  13. 13.
    Cani-Gascuel M.-P., Desbrun M.: Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics 3(1), 39–50 (1997).CrossRefGoogle Scholar
  14. 14.
    Cani-Gascuel M.-P.: Layered deformable models with implicit surfaces. In Graphics Interface Conference Proceedings, Vancouver, Canada (1998).Google Scholar
  15. 15.
    Capell S., Green S., Curless B., Duchamp T., Popovic Z.: A Multiresolution Framework for Dynamic Deformations. In ACM SIGGRAPH Symposium on Computer Animation, 41–48 (2002).Google Scholar
  16. 16.
    Cavendish J.C., Marin S.P.: A procedural feature-based approach for designing functional surfaces. In Hagen H. (ed.) Topics in Surface Modeling. SIAM, Philadelphia (1992).Google Scholar
  17. 17.
    Celniker G., Gossard, D.: Deformable curve and surface finite-elements for free-form shape design. In Proc. ACM SIGGRAPH, 257–266 (1991).Google Scholar
  18. 18.
    Celniker G., Welch, W.: Linear constraints for deformable b-spline surfaces. In Symposium on Interactive 3D Graphics, 165–170 (1992).Google Scholar
  19. 19.
    Chen Y., Zhu Q., Kaufman A., Muraki S.: Physically-based animation of volumetric objects. In Proceedings of IEEE Computer Animation, 154–160 (1998).Google Scholar
  20. 20.
    Chui C., Quak E.: Wavelets on a bounded interval. In Braess D., Schumaker L.L. (eds.) Numerical Methods of Approximation Theory. Birkhäuser Verlag, Basel, 1–24 (1992).Google Scholar
  21. 21.
    Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution Representation and Visualization of Volume Data. IEEE Trans. on Visualization and Comp. Graph., 3(4), 352–369 (1997).CrossRefGoogle Scholar
  22. 22.
    Cohen E., Riesenfeld R.F., Elber G.: Geometric Modeling with Splines: An Introduction. AK Peters (2001).Google Scholar
  23. 23.
    Conrad B., Mann S.: Better Pasting via Quasi-Interpolation. In Laurent P.J., Sablonniere P., Schumaker L.L. (eds.), Curve and Surface Design, Saint-Malo, Vanderbilt University Press, 27–36 (1999).Google Scholar
  24. 24.
    Coquillart S.: Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Proc. ACM SIGGRAPH, 187–196 (1990).Google Scholar
  25. 25.
    Dankwort C.W., Podehl G.: FIORES — A European Project for a New Workflow in Aesthetic Design. VDIBerichte Nr. 1398, 177–192 (1998).Google Scholar
  26. 26.
    De Martino T., Falcidieno B., Giannini F., Hassinger S., Ovtcharova J.: Integration of Design-by-features and Feature Recognition approaches. Computer Aided Design, 26, 646–653 (1994).CrossRefGoogle Scholar
  27. 27.
    Desbrun M., Gascuel M.-P.: Animating soft substances with implicit surfaces. In Proc. ACM SIGGRAPH, 287–290 (1995).Google Scholar
  28. 28.
    Desbrun M., Cani-Gascuel M.-P.: Active implicit surface for computer animation. In Graphics Interface Conference Proceedings, Vancouver, Canada (1998).Google Scholar
  29. 29.
    Dohmen M., de Kraker K.J., Bronsvoort W.F.: Feature validation in a multipleview modeling system. In Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Irvine (1996).Google Scholar
  30. 30.
    Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery T., Stuetzle W.: Multiresolution analysis of arbitrary meshes. In Proc. ACM SIGGRAPH, 173–182 (1995).Google Scholar
  31. 31.
    Elber G.: Free Form Surface Analysis Using A Hybrid of Symbolic and Numerical Computation. PhD thesis, Department of Computer Science, The University of Utah (1992).Google Scholar
  32. 32.
    Elber G., Gotsman G.: Multiresolution Control for Nonuniform Bspline Curve Editing. In The third Pacific Graphics Conference on Computer Graphics and Applications, Seoul, Korea, 267–278 (1995).Google Scholar
  33. 33.
    Elber G.: Multiresolution Curve Editing with Linear Constraints. The Journal of Computing & Information Science in Engineering, 1(4), 347–355 (2001).CrossRefGoogle Scholar
  34. 34.
    Farin G., Rein G., Sapidis N., Worsey A.J.: Fairing cubic B-spline curves. Computer Aided Geometric Design 4, 91–103 (1987).MathSciNetCrossRefGoogle Scholar
  35. 35.
    Farin G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, New York, 4th edition (1996).Google Scholar
  36. 36.
    Finkelstein A., Salesin D.H.: Multiresolution curves, In Proc. ACM SIGGRAPH, 261–268 (1994).Google Scholar
  37. 37.
    Fontana M., Giannini F., Meirana M.: A Free Form Feature Taxonomy. In Proceedings of EUROGRAPHICS, Computer Graphics Forum, 18(3), 646–653 (1994).Google Scholar
  38. 38.
    Forsey D., Bartels R.: Hierarchical B-spline refinement. In Proc. ACM SIGGRAPH, 205–212 (1988).Google Scholar
  39. 39.
    Fowler B.: Geometric manipulation of tensor product surfaces. In Symposium on Interactive 3D Graphics, 101–108 (1992).Google Scholar
  40. 40.
    Fowler B., Bartels R.: Constraint-based curve manipulation. IEEE Computer Graphics and Applications, 13(5), 43–49 (1993).CrossRefGoogle Scholar
  41. 41.
    Gain J.E., Dodgson N.A.: Preventing self-intersection under free-form deformation. IEEE Transactions on Visualization and Computer Graphics, 7(4), 289–298 (2001).CrossRefGoogle Scholar
  42. 42.
    Goldman R.N., Lyche T. (Eds.): Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM, Philadelphia, ISBN 0-89871-306-4 (1993).Google Scholar
  43. 43.
    Golub G.H., Van Loan C.F.: Matrix Computation. The John Hopkins University Press, Baltimore and London, Third Edition (1996).Google Scholar
  44. 44.
    Gortler S., Cohen M.: Hierarchical and variational geometric modeling with wavelets. In 1995 Symposium on 3D Interactive Graphics, 35–41 (1995).Google Scholar
  45. 45.
    Greiner G.: Variational design and fairing of spline surfaces. In Eurographics Conference Proceedings, 143–154 (1994).Google Scholar
  46. 46.
    Greiner G., Loos J.: Data dependent thin plate energy and its use in interactive surface modeling. In Eurographics Conference Proceedings, 176–185 (1996).Google Scholar
  47. 47.
    Hagen H., Schulze G.: Automatic smoothing with geometric surface patches. Computer Aided Geometric Design, 4, 231–236 (1994).MathSciNetCrossRefGoogle Scholar
  48. 48.
    Hagen H., Santarelli P.: Variational design of smooth B-spline surfaces. In Hagen H. (ed.) Topics in geometric modeling. SIAM Philadelphia, 85–94 (1992).Google Scholar
  49. 49.
    Hahmann S.: Shape improvement of surfaces. Computing Suppl., 13, 135–152 (1998).MATHMathSciNetGoogle Scholar
  50. 50.
    Hahmann S., Bonneau G.-P., Sauvage B.: Area preserving deformation of multiresolution curves. Reserach Report, IMAG RR-1062-I (2002).Google Scholar
  51. 51.
    Hirota G., Maheshwari R., Lin M.C.: Fast volume-preserving free-form deformation using multi-level optimization. In Proceedings of Solid Modeling, 234–245 (1999).Google Scholar
  52. 52.
    Hoppe H.: Progressive meshes. In Proc. ACM SIGGRAPH, 99–108 (1996).Google Scholar
  53. 53.
    Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters (1993).Google Scholar
  54. 54.
    Hsu W.M., Hughes J.F., Kaufman H.: Direct manipulation of free-form deformations. In Proc. ACM SIGGRAPH, 177–184 (1992).Google Scholar
  55. 55.
    Kazinnik R., Elber G.: Orthogonal Decomposition of Non-Uniform Bspline Spaces using Wavelets. Computer Graphics Forum, 16(3), 27–38 (1997).CrossRefGoogle Scholar
  56. 56.
    Kobbelt L.: A variational approach to subdivision. Computer Aided Geometric Design, 13, 743–761 (1996).MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Kobbelt L., Schröder P.: A Multiresolution Framework for Variational Subdivision. ACM Trans. on Graph., 17(4), 209–237 (1998).CrossRefGoogle Scholar
  58. 58.
    Kobbelt L., Campagna S., Vorsatz J., Seidel HP.: Interactive multiresolution modeling on arbitrary meshes. In Proc. ACM SIGGRAPH, 105–114 (1998).Google Scholar
  59. 59.
    Lassiter J.: Principles of traditional animation applied to 3D computer animation. In Proc. ACM SIGGRAPH, 45–44 (1987).Google Scholar
  60. 60.
    Lee A., Moreton H., Hoppe H.: Displaced subdivision surfaces. In Proc. ACM SIGGRAPH, 85–94 (2000).Google Scholar
  61. 61.
    Lyche T., Morken K.: Spline wavelets of minimal support. In Braess D., Schumaker L.L. (eds.) Numerical Methods of Approximation Theory. Birkhäuser Verlag, Basel, 177–194 (1992).Google Scholar
  62. 62.
    Lorensen W., Cline H.: Marching cubes: a high resolution 3D surface construction algorithm. In Proc. ACM SIGGRAPH, Anaheim California, 163–169 (1987).Google Scholar
  63. 63.
    Lounsbery M., De Rose T., Warren J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Transaction on Graphics, 16(1), 34–73 (1997).CrossRefGoogle Scholar
  64. 64.
    MacCracken R., Joy K.I.: Free-form deformations with lattices of arbitrary topology. In Proc. ACM SIGGRAPH, 181–188 (1996).Google Scholar
  65. 65.
    Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693 (1989).MATHCrossRefGoogle Scholar
  66. 66.
    Mann S., Yeung T.: Cylindrical Surface Pasting. In Brunnett G., Bieri H.P., Farin G. (eds.) Geometric Modeling, Springer-Wien, 233–248 (2001).Google Scholar
  67. 67.
    McDonnell K.T., Qin H.: Dynamic sculpting and animation of free-form subdivision solids. In Proceedings of IEEE Computer Animation 2000, 126–133 (2000).Google Scholar
  68. 68.
    McDonnell K.T., Qin H., Wlodarczyk R.A.: Virtual clay: A real-time sculpting system with haptic toolkits. In Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics, 179–190 (2001).Google Scholar
  69. 69.
    Mehlum E.: Non-linear spline. In Barnhill R.E., Riesenfeld R.F. (eds.) Computer Aided Geometric Design. Academic Press, 173–208 (1974).Google Scholar
  70. 70.
    Moreton H.P., Séquin C.H.: Functional optimisation for fair surface design. Computer Graphics, 26(2), 167–176 (1992).Google Scholar
  71. 71.
    Pasko A., Adzhiev V., Sourin A., Savchenko V.: Function representation in geometric modeling: Concepts, implementation and applications. The Visual Computer, 11(8), 429–446 (1995).CrossRefGoogle Scholar
  72. 72.
    Pentland A., Williams J.: Good vibrations: Modal dynamics for graphics and animation. In Proc. ACM SIGGRAPH, 215–222 (1989).Google Scholar
  73. 73.
    Pernot J.P., Guillet S., Leon J.C., Giannini F., Falcidieno B., Catalano E.: A Shape Deformation Tool to Model Character Lines in the Early Design Phases. In Conference Proceedings of Shape Modeling International, Banff, Canada (2002).Google Scholar
  74. 74.
    Pottmann H., Leopoldseder S., Hofer M.: Approximation with active B-Spline curves and surfaces. In Pacific Graphics Conference Proceedings, 8–25 (2002).Google Scholar
  75. 75.
    Qin H., Mandal c., Vemuri B.C.: Dynamic Catmull-Clark subdivision surfaces. IEEE Transactions on Visualization and Computer Graphics, 4(3), 215–229 (1998).CrossRefGoogle Scholar
  76. 76.
    Rappoport A., Sheffer A., Bercovier M.: Volume-preserving free-form solids. In Solid Modeling Conference Proceedings, 361–372 (1995).Google Scholar
  77. 77.
    Raviv A., Elber G.: Three Dimensional Freeform Sculpting Via Zero Sets of Scalar Trivariate Functions. CAD, 32(8/9), 513–526 (2000).Google Scholar
  78. 78.
    Reinsch C.H.: Smoothing by spline functions II. Num. Math., 16, 451–454 (1967).MathSciNetCrossRefGoogle Scholar
  79. 79.
    Requicha A.A., Voelcker U.B.: Solid modeling: a historical summary and contemporary assessment. IEEE Computer Graphics and Applications, 2, 9–23 (1982).Google Scholar
  80. 80.
    Requicha A.A., Rossignac J.R.: Solid modeling and beyond. IEEE Computer Graphics and Applications, 12, 31–44 (1992).CrossRefGoogle Scholar
  81. 81.
    Rossignac J.R.: Issues on feature-based editing and interrogation of solid models. Comp. Graph. 14(2), 149–172 (1990).CrossRefGoogle Scholar
  82. 82.
    Sauvage B., Hahmann S., Bonneau G.-P.: Length preserving multiresolution editing of curves. preprint (2003).Google Scholar
  83. 83.
    Schröder P., Sweldens W.: Spherical Wavelets: efficiently representing functions on the sphere. In Proc. ACM SIGGRAPH, 161–172 (1995).Google Scholar
  84. 84.
    Sederberg T.W., Parry S.R.: Free-form deformation of solid geometric models. In Proc. ACM SIGGRAPH, 151–160 (1986).Google Scholar
  85. 85.
    Shi-Min H., Hui Z., Chiew-Lan T., Jia-Guang S.: Direct manipulation of FFD: Efficient explicit solutions and decomposible multiple point constraints. The Visual Computer, 17(6), 370–379 (2001).Google Scholar
  86. 86.
    Stollnitz E., DeRose T., Salesin D.: Wavelets for Computer Graphics: Theory and Applications. Morgan-Kaufmann (1996).Google Scholar
  87. 87.
    Sweldens W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal., 29(2), 511–546 (1997).MathSciNetCrossRefGoogle Scholar
  88. 88.
    Terzopoulos D., Platt J., Barr A., Fleischer K.: Elastically deformable models. In Proc. ACM SIGGRAPH (1987).Google Scholar
  89. 89.
    Terzopoulos D., Fleischer K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. In Proc. ACM SIGGRAPH, 269–278 (1988).Google Scholar
  90. 90.
    Terzopoulos D., Qin H.: Dynamic NURBS with geometric constraints for interactive sculpting. ACM Transactions on Graphics, 13(2), 103–136 (1994).CrossRefGoogle Scholar
  91. 91.
    van den Berg E., van der Meiden R., Bronsvoort W.F.: Specification of freeform features. Proceedings Eighth Symposium on Solid Modeling and Applications (2003).Google Scholar
  92. 92.
    Vosniakos G.C.: Investigation of feature-based product modelling for mechanical parts with free-form surfaces. International Journal of Advanced Manufacturing Technology, 15, 188–199 (1999).CrossRefGoogle Scholar
  93. 93.
    Warren J., Weimer H.: Variational subdivision for natural cubic splines. Approximation Theory IX, 345–352 (1998).MathSciNetGoogle Scholar
  94. 94.
    Warren J., Weimer H.: Subdivision Methods for Geometric Design: a constructive approach. Morgan Kaufmann Publisher (2001).Google Scholar
  95. 95.
    Weimer H., Warren J.: Subdivision schemes for thin plate splines. In Eurographics Conference Proceedings, 303–313 (1998).Google Scholar
  96. 96.
    Weimer H., Warren J.: Subdivision schemes for fluid flow. In Proc. ACM SIGGRAPH, 111–120 (1999).Google Scholar
  97. 97.
    Welch W., Witkin A.: Variational surface modeling. In Proc. ACM SIGGRAPH, 157–166 (1992).Google Scholar
  98. 98.
    Whitaker R., Breen D.: Level-set models for the deformation of solid objects. In Implicit Surfaces '98, Eurographics and ACM SIGGRAPH Workshop, Seattle, 19–36 (1998).Google Scholar
  99. 99.
    Witkin A., Welch W.: Fast animation and control for non-rigid structures. In Proc. ACM SIGGRAPH, 243–252 (1990).Google Scholar
  100. 100.
    Wyvill G., McPheeters C., Wyvill B.: Data structure for soft objects. The Visual Computer, 2(4), 227–234 (1986).CrossRefGoogle Scholar
  101. 101.
    Wyvill A., Galin E., Guy A.: Extending the CSG tree warping, blending and boolean operations in an implicit surface modeling system. In Implicit Surfaces, Eurographics and ACM SIGGRAPH Workshop, Seattle, 113–122 (1998).Google Scholar
  102. 102.
    Zorin D., Schröder P., Sweldens W.: Interactive Multiresolution Mesh Editing. In Proc. ACM SIGGRAPH, 259–268 (1997).Google Scholar
  103. 103.
    Zorin D., Schröder P.: Subdivision for Modeling and Animation. In ACM SIGGRAPH Course Notes (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefanie Hahmann
    • 1
  • Gershon Elber
    • 2
  1. 1.Laboratoire LMC-IMAGInstitut National Polytechnique de GrenobleFrance
  2. 2.TechnionHaifaIsrael

Personalised recommendations