Skip to main content

A Survey on Data Structures for Level-of-Detail Models

  • Conference paper
Advances in Multiresolution for Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

In this paper we survey some of the major data structures for encoding Level Of Detail (LOD) models. We classify LOD data structures according to the dimensionality of the basic structural element they represent into point-, triangle-, and tetrahedron-based data structures. Within each class we will review single-level data structures, general data structures for LOD models based on irregular meshes as well as more specialised data structures that assume a certain (semi-) regularity of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.openmesh.org. 2004.

    Google Scholar 

  2. R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data structures for regular local mesh refinement. In R. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing, IMACS Transactions on Scientific Computation, volume 1, pages 3–17. North-Holland, Amsterdam, The Netherlands, 1983.

    Google Scholar 

  3. B. G. Baumgart. A polyhedron representation for computer vision. In Proc. AFIPS National Computer Conference, volume 44, pages 589–596, 1975.

    Google Scholar 

  4. J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh — a generic and efficient polygon mesh data structure. In Proc. OpenSG Symposium, 2002.

    Google Scholar 

  6. M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point sampled geometry. In Proc. Eurographics Workshop on Rendering, 2002.

    Google Scholar 

  7. E. Bruzzone and L. De Floriani. Two data structures for building tetrahedralizations. The Visual Computer, 6(5):266–283, 1990.

    Article  Google Scholar 

  8. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges-a scalable representation for triangle meshes. ACM Journal of Graphics Tools, 3(4):1–12, 1998.

    Google Scholar 

  9. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective refinement queries for volume visualization of unstructured tetrahedral meshes. IEEE Transactions on Visualization and Computer Graphics, 10(1):29–45, 2004.

    Article  Google Scholar 

  10. E. Danovaro and L. De Floriani. Half-edge multi-tessellation: A compact representation for multiresolution tetrahedral meshes. In Proc. 1st International Symposium on 3D Data Processing Visualization and Transmission, pages 494–499. IEEE Computer Society, 2002.

    Google Scholar 

  11. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Compressing multiresolution triangle meshes. In C.S. Jensen, M. Schneider, V.J. B. Seeger, and Tsotras, editors, Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science, volume 2121, pages 345–364. Springer Verlag, Berlin, July 2001.

    Google Scholar 

  12. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for 3d multi-tessellations: an overview. In H. Post, G.P. Bonneau, and G.M. Nielson, editors, Proc. Dagstuhl Scientific Visualization Seminar. Kluwer Academic Publishers, 2002.

    Google Scholar 

  13. E. Danovaro., L. De Floriani, P. Magillo, and N. Sokolovsky. Data structures for encoding lod models generated through half-edge collapse. Technical Report DISI-TR-01-06, Department of Computer and Information Science, University of Genova, Genova (Italy), 2003.

    Google Scholar 

  14. L. De Floriani and P. Magillo. Multiresolution mesh representation: Models and data structures. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, Springer Verlag, Heidelberg (D), 2002.

    Google Scholar 

  15. L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-triangulations. In Proc. IEEE Visualization'98, pages 43–50, Research Triangle Park, NC (USA), October 1998. IEEE Computer Society.

    Google Scholar 

  16. L. De Floriani and M. Lee. Selective refinement in nested tetrahedral meshes. In G. Brunnett and an H. Mueller B. Hamann, editors, Geometric Modeling for Scientific Visualization. Springer Verlag, New York, 2003. (to appear).

    Google Scholar 

  17. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. In R. Klein, W. Straßer, and R. Rau, editors, Geometric Modeling: Theory and Practice, pages 302–323. Springer Verlag, 1997.

    Google Scholar 

  18. C. DeCoro and R. Pajarola. Xfastmesh: Fast view-dependent meshing from external memory. In Proc. IEEE Visualization 2002, pages 263–270, Boston, MA, October 2002. IEEE Computer Society.

    Google Scholar 

  19. D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica, 5(4):3–32, 1989.

    Article  MathSciNet  Google Scholar 

  20. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization'97, pages 81–88, Phoenix, AZ, October 1997. IEEE Computer Society.

    Google Scholar 

  21. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum, 18(3):C83–C94, 1999.

    Article  Google Scholar 

  22. J. El-Sana and Y. Chiang. External memory view-dependent simplification. Computer Graphics Forum, 19(3):C139–C150, 2000.

    Article  Google Scholar 

  23. W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks. Algorithmica, 30(2):264–286, 2001.

    Article  MathSciNet  Google Scholar 

  24. P. Gandoin and O. Devillers. Progressive lossless compression of arbitrary simplicial complexes. ACM Transactions on Graphics, 21(3):372–379, July 2002.

    Article  Google Scholar 

  25. T. Gerstner. Multiresolution visualization and compression of global topographic data. GeoInformatica, 7(1):7–32, 2003.

    Article  MathSciNet  Google Scholar 

  26. T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proc. 1999 Symposium on Volume Visualization. ACM Press, 1999.

    Google Scholar 

  27. B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive view-dependent rendering of large isosurfaces. In Proc. IEEE Visualization 2002, Boston, MA, October 2002. IEEE Computer Society.

    Google Scholar 

  28. G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer, 16:357–369, 2000.

    Article  Google Scholar 

  29. M.H. Gross and O.G. Staadt. Progressive tetrahedralizations. In Proc. IEEE Visualization'98, pages 397–402, Research Triangle Park, NC, 1998. IEEE Computer Society.

    Google Scholar 

  30. R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization '97, pages 387–394, Phoenix, AZ, October 1997.

    Google Scholar 

  31. C. Gotsman S. Gumhold and L. Kobbelt. Simplification and compression of 3D meshes. 2002.

    Google Scholar 

  32. D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation, 17(5):457–472, May 1994.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Hoppe. Progressive meshes. In Proc. ACM SIGGRAPH, pages 99–108, 1996.

    Google Scholar 

  34. H. Hoppe. View-dependent refinement of progressive meshes. In Proc. ACM SIGGRAPH, pages 189–198, Los Angeles, August 1997.

    Google Scholar 

  35. H. Hoppe. Efficient implementation of progressive meshes. Computers & Graphics, 22(1):27–36, 1998.

    Article  Google Scholar 

  36. J. Kim and S. Lee. Truly selective refinement of progressive meshes. In Proc. Graphics Interface 2001, pages 101–110, 2001.

    Google Scholar 

  37. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In Visualization in Scientific Computing '98, pages 13–24. Springer Verlag, 1998.

    Google Scholar 

  38. L. Kobbelt. \(\sqrt 3 \) subdivision. In Proc. ACM SIGGRAPH, pages 103–112. ACM, 2000.

    Google Scholar 

  39. C.L. Lawson. Software for C1 Surface Interpolation. In J.R. Rice, editor, Mathematical Software III, pages 161–164. Academic Press, 1977.

    Google Scholar 

  40. A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH, 1998.

    Google Scholar 

  41. M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical tetrahedral meshes. In Proc. International Conference on Shape Modeling & Applications, pages 286–295, Genova, Italy, May 2001.

    Google Scholar 

  42. M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, April 2000.

    Article  Google Scholar 

  43. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time continuous level of detail rendering of height fields. In Proc. ACM SIGGRAPH, pages 109–118, New Orleans, August 1996.

    Google Scholar 

  44. P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics, 8(3):239–254, 2002.

    Article  Google Scholar 

  45. H. Lopes and G. Tavares. Structural operators for modeling 3-manifolds. In SMA '97: Proc. the Fourth Symposium on Solid Modeling and Applications, pages 10–18. ACM, May 1997.

    Google Scholar 

  46. D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. In Proc. ACM SIGGRAPH, pages 199–207, 1997.

    Google Scholar 

  47. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc., 2003.

    Google Scholar 

  48. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.

    Google Scholar 

  49. J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Computing, 16(1):210–227, January 1995.

    Article  MATH  MathSciNet  Google Scholar 

  50. D.E Mueller and F.P. Preparata. Finding the intersection of two convex polyhedra. SIAM Theoretical Computer Science, 7:217–236, 1978.

    Article  Google Scholar 

  51. S. Choi N. Amenta and R. Kolluri. The power crust. In Proc. 6th ACM Symposium on Solid Modeling, pages 249–260, Ann Arbor, Michigan, June 2001.

    Google Scholar 

  52. G. M. Nielson. Tools for triangulations and tetrahedralizations and constructing functions defined over them. In G. M. Nielson, H. Hagen, and H. Müller, editors, Scientific Visualization: Overviews, Methodologies and Techniques, chapter 20, pages 429–525. IEEE Computer Society, Silver Spring, MD, 1997.

    Google Scholar 

  53. M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Computing, 56(4):365–385, 1997.

    MathSciNet  Google Scholar 

  54. R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization'98, pages 19–26, Research Triangle Park, NC, October 1998. IEEE Computer Society.

    Google Scholar 

  55. R. Pajarola. Fastmesh: Efficient view-dependent meshing. In Proc. Pacific Graphics 2001, pages 22–30. IEEE Computer Society, 2001.

    Google Scholar 

  56. R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Transactions on Visualization and Computer Graphics, 6(1):79–93, 2000.

    Article  Google Scholar 

  57. A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–102, January 1993.

    Article  Google Scholar 

  58. V. Pascucci. Slow growing subdivision (SGS) in any dimension: towards removing the curse of dimensionality. Computer Graphics Forum, 21(3), 2002.

    Google Scholar 

  59. M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-sampled surfaces. In Proc. IEEE Visualization. IEEE Computer Society, October 2002.

    Google Scholar 

  60. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM SIGGRAPH, pages 217–224, 1997.

    Google Scholar 

  61. E. Puppo. Variable resolution triangulations. Computational Geometry Theory and Applications, 11(3—4):219–238, December 1998.

    MATH  MathSciNet  Google Scholar 

  62. M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid techniques. Communications in Applied Numerical Methods, 8:281–290, 1992.

    Article  Google Scholar 

  63. H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading, MA, 1990.

    Google Scholar 

  64. H. Samet. Foundations of Multi-Dimensional Data Structures. 2003, to appear.

    Google Scholar 

  65. S. Zhang. Successive subdivision of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Mathematics, 21:541–556, 1995.

    MATH  Google Scholar 

  66. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. In Proc. ACM SIGGRAPH, pages 123–132. ACM Press, 1998.

    Google Scholar 

  67. I.J. Trotts, B. Hamann, and K.I. Joy. Simplification of tetrahedral meshes with error bounds. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–237, 1999.

    Article  Google Scholar 

  68. L. Velho, L. Henriquez de Figueredo, and J. Gomes. A unified approach for hierarchical adaptive tessellation of surfaces. ACM Transactions on Graphics, 4(18):329–360, 1999.

    Article  Google Scholar 

  69. L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer Graphics Forum, 19(4):195–214, 2000.

    Article  Google Scholar 

  70. J.C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171–183, 1997.

    Article  Google Scholar 

  71. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing regular volume data. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization '97, pages 135–142, Phoenix, AZ, October 1997.

    Google Scholar 

  72. M. Zwicker, H. Pfister, J. Baar, and M. Gross. Surface splatting. In Proc. ACM SIGGRAPH, pages 371–378, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Floriani, L., Kobbelt, L., Puppo, E. (2005). A Survey on Data Structures for Level-of-Detail Models. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_3

Download citation

Publish with us

Policies and ethics