A Survey on Data Structures for Level-of-Detail Models

  • Leila De Floriani
  • Leif Kobbelt
  • Enrico Puppo
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this paper we survey some of the major data structures for encoding Level Of Detail (LOD) models. We classify LOD data structures according to the dimensionality of the basic structural element they represent into point-, triangle-, and tetrahedron-based data structures. Within each class we will review single-level data structures, general data structures for LOD models based on irregular meshes as well as more specialised data structures that assume a certain (semi-) regularity of the data.


Directed Acyclic Graph Tetrahedral Mesh Triangle Mesh Irregular Mesh IEEE Visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    http://www.openmesh.org. 2004.Google Scholar
  2. 2.
    R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data structures for regular local mesh refinement. In R. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing, IMACS Transactions on Scientific Computation, volume 1, pages 3–17. North-Holland, Amsterdam, The Netherlands, 1983.Google Scholar
  3. 3.
    B. G. Baumgart. A polyhedron representation for computer vision. In Proc. AFIPS National Computer Conference, volume 44, pages 589–596, 1975.Google Scholar
  4. 4.
    J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh — a generic and efficient polygon mesh data structure. In Proc. OpenSG Symposium, 2002.Google Scholar
  6. 6.
    M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point sampled geometry. In Proc. Eurographics Workshop on Rendering, 2002.Google Scholar
  7. 7.
    E. Bruzzone and L. De Floriani. Two data structures for building tetrahedralizations. The Visual Computer, 6(5):266–283, 1990.CrossRefGoogle Scholar
  8. 8.
    S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges-a scalable representation for triangle meshes. ACM Journal of Graphics Tools, 3(4):1–12, 1998.Google Scholar
  9. 9.
    P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective refinement queries for volume visualization of unstructured tetrahedral meshes. IEEE Transactions on Visualization and Computer Graphics, 10(1):29–45, 2004.CrossRefGoogle Scholar
  10. 10.
    E. Danovaro and L. De Floriani. Half-edge multi-tessellation: A compact representation for multiresolution tetrahedral meshes. In Proc. 1st International Symposium on 3D Data Processing Visualization and Transmission, pages 494–499. IEEE Computer Society, 2002.Google Scholar
  11. 11.
    E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Compressing multiresolution triangle meshes. In C.S. Jensen, M. Schneider, V.J. B. Seeger, and Tsotras, editors, Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science, volume 2121, pages 345–364. Springer Verlag, Berlin, July 2001.Google Scholar
  12. 12.
    E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for 3d multi-tessellations: an overview. In H. Post, G.P. Bonneau, and G.M. Nielson, editors, Proc. Dagstuhl Scientific Visualization Seminar. Kluwer Academic Publishers, 2002.Google Scholar
  13. 13.
    E. Danovaro., L. De Floriani, P. Magillo, and N. Sokolovsky. Data structures for encoding lod models generated through half-edge collapse. Technical Report DISI-TR-01-06, Department of Computer and Information Science, University of Genova, Genova (Italy), 2003.Google Scholar
  14. 14.
    L. De Floriani and P. Magillo. Multiresolution mesh representation: Models and data structures. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, Springer Verlag, Heidelberg (D), 2002.Google Scholar
  15. 15.
    L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-triangulations. In Proc. IEEE Visualization'98, pages 43–50, Research Triangle Park, NC (USA), October 1998. IEEE Computer Society.Google Scholar
  16. 16.
    L. De Floriani and M. Lee. Selective refinement in nested tetrahedral meshes. In G. Brunnett and an H. Mueller B. Hamann, editors, Geometric Modeling for Scientific Visualization. Springer Verlag, New York, 2003. (to appear).Google Scholar
  17. 17.
    L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. In R. Klein, W. Straßer, and R. Rau, editors, Geometric Modeling: Theory and Practice, pages 302–323. Springer Verlag, 1997.Google Scholar
  18. 18.
    C. DeCoro and R. Pajarola. Xfastmesh: Fast view-dependent meshing from external memory. In Proc. IEEE Visualization 2002, pages 263–270, Boston, MA, October 2002. IEEE Computer Society.Google Scholar
  19. 19.
    D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica, 5(4):3–32, 1989.MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization'97, pages 81–88, Phoenix, AZ, October 1997. IEEE Computer Society.Google Scholar
  21. 21.
    J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum, 18(3):C83–C94, 1999.CrossRefGoogle Scholar
  22. 22.
    J. El-Sana and Y. Chiang. External memory view-dependent simplification. Computer Graphics Forum, 19(3):C139–C150, 2000.CrossRefGoogle Scholar
  23. 23.
    W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks. Algorithmica, 30(2):264–286, 2001.MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Gandoin and O. Devillers. Progressive lossless compression of arbitrary simplicial complexes. ACM Transactions on Graphics, 21(3):372–379, July 2002.CrossRefGoogle Scholar
  25. 25.
    T. Gerstner. Multiresolution visualization and compression of global topographic data. GeoInformatica, 7(1):7–32, 2003.MathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proc. 1999 Symposium on Volume Visualization. ACM Press, 1999.Google Scholar
  27. 27.
    B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive view-dependent rendering of large isosurfaces. In Proc. IEEE Visualization 2002, Boston, MA, October 2002. IEEE Computer Society.Google Scholar
  28. 28.
    G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer, 16:357–369, 2000.CrossRefGoogle Scholar
  29. 29.
    M.H. Gross and O.G. Staadt. Progressive tetrahedralizations. In Proc. IEEE Visualization'98, pages 397–402, Research Triangle Park, NC, 1998. IEEE Computer Society.Google Scholar
  30. 30.
    R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization '97, pages 387–394, Phoenix, AZ, October 1997.Google Scholar
  31. 31.
    C. Gotsman S. Gumhold and L. Kobbelt. Simplification and compression of 3D meshes. 2002.Google Scholar
  32. 32.
    D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation, 17(5):457–472, May 1994.MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Hoppe. Progressive meshes. In Proc. ACM SIGGRAPH, pages 99–108, 1996.Google Scholar
  34. 34.
    H. Hoppe. View-dependent refinement of progressive meshes. In Proc. ACM SIGGRAPH, pages 189–198, Los Angeles, August 1997.Google Scholar
  35. 35.
    H. Hoppe. Efficient implementation of progressive meshes. Computers & Graphics, 22(1):27–36, 1998.CrossRefGoogle Scholar
  36. 36.
    J. Kim and S. Lee. Truly selective refinement of progressive meshes. In Proc. Graphics Interface 2001, pages 101–110, 2001.Google Scholar
  37. 37.
    R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In Visualization in Scientific Computing '98, pages 13–24. Springer Verlag, 1998.Google Scholar
  38. 38.
    L. Kobbelt. \(\sqrt 3 \) subdivision. In Proc. ACM SIGGRAPH, pages 103–112. ACM, 2000.Google Scholar
  39. 39.
    C.L. Lawson. Software for C1 Surface Interpolation. In J.R. Rice, editor, Mathematical Software III, pages 161–164. Academic Press, 1977.Google Scholar
  40. 40.
    A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH, 1998.Google Scholar
  41. 41.
    M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical tetrahedral meshes. In Proc. International Conference on Shape Modeling & Applications, pages 286–295, Genova, Italy, May 2001.Google Scholar
  42. 42.
    M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, April 2000.CrossRefGoogle Scholar
  43. 43.
    P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time continuous level of detail rendering of height fields. In Proc. ACM SIGGRAPH, pages 109–118, New Orleans, August 1996.Google Scholar
  44. 44.
    P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics, 8(3):239–254, 2002.CrossRefGoogle Scholar
  45. 45.
    H. Lopes and G. Tavares. Structural operators for modeling 3-manifolds. In SMA '97: Proc. the Fourth Symposium on Solid Modeling and Applications, pages 10–18. ACM, May 1997.Google Scholar
  46. 46.
    D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. In Proc. ACM SIGGRAPH, pages 199–207, 1997.Google Scholar
  47. 47.
    D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc., 2003.Google Scholar
  48. 48.
    M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.Google Scholar
  49. 49.
    J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Computing, 16(1):210–227, January 1995.MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    D.E Mueller and F.P. Preparata. Finding the intersection of two convex polyhedra. SIAM Theoretical Computer Science, 7:217–236, 1978.CrossRefGoogle Scholar
  51. 51.
    S. Choi N. Amenta and R. Kolluri. The power crust. In Proc. 6th ACM Symposium on Solid Modeling, pages 249–260, Ann Arbor, Michigan, June 2001.Google Scholar
  52. 52.
    G. M. Nielson. Tools for triangulations and tetrahedralizations and constructing functions defined over them. In G. M. Nielson, H. Hagen, and H. Müller, editors, Scientific Visualization: Overviews, Methodologies and Techniques, chapter 20, pages 429–525. IEEE Computer Society, Silver Spring, MD, 1997.Google Scholar
  53. 53.
    M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Computing, 56(4):365–385, 1997.MathSciNetGoogle Scholar
  54. 54.
    R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization'98, pages 19–26, Research Triangle Park, NC, October 1998. IEEE Computer Society.Google Scholar
  55. 55.
    R. Pajarola. Fastmesh: Efficient view-dependent meshing. In Proc. Pacific Graphics 2001, pages 22–30. IEEE Computer Society, 2001.Google Scholar
  56. 56.
    R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Transactions on Visualization and Computer Graphics, 6(1):79–93, 2000.CrossRefGoogle Scholar
  57. 57.
    A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–102, January 1993.CrossRefGoogle Scholar
  58. 58.
    V. Pascucci. Slow growing subdivision (SGS) in any dimension: towards removing the curse of dimensionality. Computer Graphics Forum, 21(3), 2002.Google Scholar
  59. 59.
    M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-sampled surfaces. In Proc. IEEE Visualization. IEEE Computer Society, October 2002.Google Scholar
  60. 60.
    J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM SIGGRAPH, pages 217–224, 1997.Google Scholar
  61. 61.
    E. Puppo. Variable resolution triangulations. Computational Geometry Theory and Applications, 11(3—4):219–238, December 1998.MATHMathSciNetGoogle Scholar
  62. 62.
    M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid techniques. Communications in Applied Numerical Methods, 8:281–290, 1992.CrossRefGoogle Scholar
  63. 63.
    H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading, MA, 1990.Google Scholar
  64. 64.
    H. Samet. Foundations of Multi-Dimensional Data Structures. 2003, to appear.Google Scholar
  65. 65.
    S. Zhang. Successive subdivision of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Mathematics, 21:541–556, 1995.MATHGoogle Scholar
  66. 66.
    G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. In Proc. ACM SIGGRAPH, pages 123–132. ACM Press, 1998.Google Scholar
  67. 67.
    I.J. Trotts, B. Hamann, and K.I. Joy. Simplification of tetrahedral meshes with error bounds. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–237, 1999.CrossRefGoogle Scholar
  68. 68.
    L. Velho, L. Henriquez de Figueredo, and J. Gomes. A unified approach for hierarchical adaptive tessellation of surfaces. ACM Transactions on Graphics, 4(18):329–360, 1999.CrossRefGoogle Scholar
  69. 69.
    L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer Graphics Forum, 19(4):195–214, 2000.CrossRefGoogle Scholar
  70. 70.
    J.C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171–183, 1997.CrossRefGoogle Scholar
  71. 71.
    Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing regular volume data. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization '97, pages 135–142, Phoenix, AZ, October 1997.Google Scholar
  72. 72.
    M. Zwicker, H. Pfister, J. Baar, and M. Gross. Surface splatting. In Proc. ACM SIGGRAPH, pages 371–378, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Leila De Floriani
    • 1
  • Leif Kobbelt
    • 2
  • Enrico Puppo
    • 1
  1. 1.Department of Computer Science (DISI)University of GenovaItaly
  2. 2.Computer Graphics GroupRWTH AachenGermany

Personalised recommendations