Simplification of Topologically Complex Assemblies

  • Carlos Andújar
  • Marta Fairén
  • Pere Brunet
  • Víctor Cebollada
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this paper we present a new simplification approach intended for scenes containing a huge number of simple objects forming a topologically complex assembly. Our method combines appearance preservation and topology reduction by converting a 3D model to and from an intermediate octree representation. During the conversion of the input mesh into an octree, appearance attributes such as colour are stored in the octree nodes. Unlike related approaches, the inside/outside values at octree vertices are computed according to neighbourhood configuration rather than by direct sampling. This allows the reconstructed surface to span only a reduced subset of the terminal nodes of the octree (those which are classified as border nodes), thus avoiding small cracks and removing internal structures not visible from the outside. The reconstruction step of our method succeeds in preserving the appearance of most of the scene objects while drastically simplifying the geometry and topology.


Terminal Node Scene Graph Border Node Reconstruction Step Appearance Attribute 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Andújar, D. Ayala, P. Brunet, R. Joan-Arinyo, and J. Solé. Automatic generation of multiresolution boundary representations. Computer Graphics Forum, 15(3), 1996.Google Scholar
  2. 2.
    C. Andújar, P. Brunet, and D. Ayala. Topology-reducing surface simplification using a discrete solid representation. ACM Transactions on Graphics, 21(2):88–105, 2002.CrossRefGoogle Scholar
  3. 3.
    J. El-Sana and A. Varshney. Topology simplification for polygonal virtual environments. IEEE Transactions on Visualization and Computer Graphics, 4(2), April–June 1998. ISSN 1077-2626.Google Scholar
  4. 4.
    J. El-Sana and A. Varshney. Generalized view-dependent simplification. 18(3):83–94, 1999.Google Scholar
  5. 5.
    M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error metrics. In IEEE Visualization '98, pages 263–269. IEEE, 1998.Google Scholar
  6. 6.
    M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In Proc. ACM SIGGRAPH '97, pages 209–216. Addison Wesley, August 1997.Google Scholar
  7. 7.
    G. Müller and S. Schäfer and D. Fellner. A rapid clustering algorithm for efficient rendering. In Eurographics Conference, short paper, 1999.Google Scholar
  8. 8.
    T. He, L. Hong, A. Varshney, and S. W. Wang. Controlled topology simplification. IEEE Transactions on Visualization and Computer Graphics, 2(2):171–184, 1996.CrossRefGoogle Scholar
  9. 9.
    T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. In Proc. ACM SIGGRAPH 2002, pages 339–346, 2002.Google Scholar
  10. 10.
    L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface extraction from volume data. In Proc. ACM SIGGRAPH 2001, pages 57–66, 2001.Google Scholar
  11. 11.
    P. Lindstrom and C. Silva. A memory insensitive technique for large model simplification. In Proc. IEEE Visualization 2001, pages 121–126, 2001.Google Scholar
  12. 12.
    K.-L. Low and T.-S. Tan. Model simplification using vertex-clustering. In Proc. Symposium on Interactive 3D Graphics, New York, 1997. ACM Press.Google Scholar
  13. 13.
    D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of Detail for 3D Graphics. Morgan Kaufmann publishers, 2003.Google Scholar
  14. 14.
    C. Montani, R. Scateni, and R. Scopigno. Discretized Marching Cubes. In Visualization'94, pages 281–287. IEEE Computer Society Press, 1994.Google Scholar
  15. 15.
    Y. Ohtake and A. Belyaev. Mesh optimization for polygonized isosurfaces. Computer Graphics Forum, 20(3), 2001.Google Scholar
  16. 16.
    J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM SIGGRAPH '97, pages 217–224, August 1997.Google Scholar
  17. 17.
    J. Rossignac and P. Borrel. Multiresolution 3D approximations for rendering complex scenes. In Modeling in Computer Graphics. Springer-Verlag, 1993.Google Scholar
  18. 18.
    W. J. Schroeder. A topology modifying progressive decimation algorithm. In IEEE Visualization '97, pages 205–212. IEEE, November 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Carlos Andújar
    • 1
  • Marta Fairén
    • 1
  • Pere Brunet
    • 1
  • Víctor Cebollada
    • 1
  1. 1.Department of Computer ScienceUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations