Adaptive Thinning for Terrain Modelling and Image Compression

  • Laurent Demaret
  • Nira Dyn
  • Michael S. Floater
  • Armin Iske
Part of the Mathematics and Visualization book series (MATHVISUAL)


Adaptive thinning algorithms are greedy point removal schemes for bivariate scattered data sets with corresponding function values, where the points are recursively removed according to some data-dependent criterion. Each subset of points, together with its function values, defines a linear spline over its Delaunay triangulation. The basic criterion for the removal of the next point is to minimise the error between the resulting linear spline at the bivariate data points and the original function values. This leads to a hierarchy of linear splines of coarser and coarser resolutions.

This paper surveys the various removal strategies developed in our earlier papers, and the application of adaptive thinning to terrain modelling and to image compression. In our image test examples, we found that our thinning scheme, adapted to diminish the least squares error, combined with a post-processing least squares optimisation and a customised coding scheme, often gives better or comparable results to the wavelet-based scheme SPIHT.


Image Compression Delaunay Triangulation Scattered Data Compression Scheme Pixel Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Å. Björck. Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.Google Scholar
  2. 2.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 2nd edition. MIT Press, Cambridge, Massachusetts, 2001.Google Scholar
  3. 3.
    G. M. Davis and A. Nosratinia. Wavelet-based image coding: an overview, Appl. Comp. Control, Signal & Circuits, B. N. Datta (ed), Birkhauser, 205–269, 1999.Google Scholar
  4. 4.
    L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. Proceedings of IEEE Visualization 97:103–110, 1997.Google Scholar
  5. 5.
    L. Demaret and A. Iske. Scattered data coding in digital image compression. Curve and Surface Fitting: Saint-Malo 2002, A. Cohen, J.-L. Merrien, and L. L. Schumaker (eds.), Nashboro Press, Brentwood, 107–117, 2003.Google Scholar
  6. 6.
    L. Demaret and A. Iske. Advances in digital image compression by adaptive thinning. To appear in the MCFA Annals, Volume III, 2004.Google Scholar
  7. 7.
    N. Dyn, M. S. Floater, and A. Iske. Univariate adaptive thinning. Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 123–134, 2001.Google Scholar
  8. 8.
    N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered data. J. Comput. Appl. Math. 145(2):505–517, 2002.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing 6(9):1305–1315, Sep 1997.CrossRefGoogle Scholar
  10. 10.
    M. S. Floater and A. Iske. Thinning algorithms for scattered data interpolation. BIT 38:705–720, 1998.MathSciNetGoogle Scholar
  11. 11.
    R. J. Fowler and J. J. Little. Automatic extraction of irregular network digital terrain models. Computer Graphics 13:199–207, 1979.Google Scholar
  12. 12.
    C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D Meshes. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M. S. Floater (eds.), Springer-Verlag, Heidelberg, 319–361, 2002.Google Scholar
  13. 13.
    P. S. Heckbert and M. Garland. Survey of surface simplification algorithms. Technical Report, Computer Science Dept., Carnegie Mellon University, 1997.Google Scholar
  14. 14.
    D. S. Hochbaum (ed.). Approximation algorithms for NP-hard problems. PWS Publishing Company, Boston, 1997.Google Scholar
  15. 15.
    A. Iske. Progressive scattered data filtering. J. Comput. Appl. Math. 158(2):297–316, 2003.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Lee. Comparison of existing methods for building triangular irregular network models of terrain from grid digital elevation models. Int. J. of Geographical Information Systems 5(3):267–285, 1991.Google Scholar
  17. 17.
    F. P. Preparata and M. I. Shamos. Computational Geometry. Springer, New York, 1988.Google Scholar
  18. 18.
    A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. Circuits and Systems for Video Technology 6:243–250, 1996.CrossRefGoogle Scholar
  19. 19.
    L. L. Schumaker. Triangulation methods. Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic Press, New York, 219–232, 1987.Google Scholar
  20. 20.
    D. B. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. DIMACS, Ser. Discrete Math. Theor. Comput. Sci. 20:355–397, 1995.MATHMathSciNetGoogle Scholar
  21. 21.
    D. Taubman. High performance scalable image compression with EBCOT, IEEE Trans. on Image Processing, July 2000, 1158–1170, 2000.Google Scholar
  22. 22.
    D. Taubman and M. W. Marcellin. JPEG2000: Image Compression Fundamentals, Standards and Practice, Kluwer, Boston, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laurent Demaret
    • 1
  • Nira Dyn
    • 2
  • Michael S. Floater
    • 3
  • Armin Iske
    • 1
  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.School of Mathematical SciencesTel-Aviv UniversityIsrael
  3. 3.Computer Science DepartmentOslo UniversityNorway

Personalised recommendations