About the Potential of GPS Radio Occultation Measurements for Exploring the Ionosphere

  • Norbert Jakowski
  • Konstantin Tsybulyal
  • Stanimir M. Stankov
  • Andreas Wehrenpfennig

Summary

The GPS radio occultation technique onboard LEO satellites such as CHAMP is a rather simple and relatively inexpensive tool for profiling the ionospheric electron density from satellite orbit heights down to the bottomside. The paper addresses capabilities of the ionospheric radio occultation (IRO) technique for globally monitoring the ionosphere on a routine basis to derive value added data products and study various ionospheric processes including perturbations. A model assisted retrieval technique, operational data processing and validation of vertical electron density profiles are also discussed. These profiles may not only be used to validate ionospheric models, they provide also a good data basis for developing new models of key ionospheric parameters such as the critical frequency foF2, the peak height hmF2 and the scale height Hs. Such models are helpful to improve retrieval procedures and tomographic reconstruction techniques. Due to the operational data processing capabilities the data products may contribute to space weather monitoring.

Key words

Ionosphere GPS radio occultation electron density total electron content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belehaki A, Tsagouri I (2002) Investigation of the relative bottomside/topside contribution to the Total Electron Content estimates. Annals of Geophysics 45(1): 73–86.Google Scholar
  2. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci 33: 175–190.CrossRefGoogle Scholar
  3. Jakowski N (1996) TEC Monitoring by Using Satellite Positioning Systems. In: Modern Ionospheric Science, eds. Kohl H, Rüster R, Schlegel K, EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp 371–390.Google Scholar
  4. Jakowski N, Wehrenpfennig A, Heise S, Reigber Ch, Lühr H, Grunwaldt L, Meehan T (2002) GPS Radio Occultation Measurements of the Ionosphere from CHAMP: Early Results. Geophys Res Lett 29: No. 10, 10.1029/2001GL014364.Google Scholar
  5. Jakowski N, Tsybulya K, Mielich J, Belehaki A, Altadill D, Jodogne JC, Zolesi B (2004a) Validation of GPS Radio Occultation Measurements on CHAMP by Vertical Sounding Observations in Europe. This issue.Google Scholar
  6. Jakowski N, Tsybulya K, Radicella S M, Cueto M, Herraiz M (2004b) Comparison of electron density profiles from CHAMP data with NeQuick model. This issue.Google Scholar
  7. Reigber Ch, Lühr H, Schwintzer P (2000) CHAMP mission status and perspectives. Suppl. to EOS, Transactions, AGU 81: 48, F307.Google Scholar
  8. Schreiner W S, Sokolovskiy S V, Rocken C (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34: 949–966.CrossRefGoogle Scholar
  9. Wehrenpfennig A, Jakowski N, Wickert J (2001) A Dynamically Configurable System for Operational Processing of Space Weather Data. Phys Chem Earth 26: 601–604.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Norbert Jakowski
    • 1
  • Konstantin Tsybulyal
    • 1
  • Stanimir M. Stankov
    • 1
  • Andreas Wehrenpfennig
    • 2
  1. 1.Deutsches Zentrum für Luft- und Raumfahrt, Institut für Kommunikation und NavigationNeustrelitzDeutschland
  2. 2.Fachhochschule NeubrandenburgNeubrandenburgDeutschland

Personalised recommendations