Advertisement

On the Quantum Width of a Black Hole Horizon

  • Donald Marolf
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)

Keywords

Black Hole Entanglement Entropy Spherical Shell Planck Scale Black Hole Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Bekenstein, “Black Holes And Entropy,” Phys. Rev. D 7, 2333 (1973); J. D. Bekenstein, “Generalized Second Law Of Thermodynamics In Black Hole Physics,” Phys. Rev. D 9, 3292 (1974).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    J. D. Bekenstein, “Quantum information and quantum black holes,” arXiv:gr-qc/0107049.Google Scholar
  3. 3.
    L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377 (1995) [arXiv:hep-th/9409089].MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    G. ‘t Hooft, “Dimensional Reduction In Quantum Gravity,” arXiv:gr-qc/9310026.Google Scholar
  5. 5.
    D. Marolf and R. Sorkin, “Perfect mirrors and the self-accelerating box paradox,” Phys. Rev. D 66 (2002) 104004 [arXiv:hep-th/0201255].MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    D. Marolf and R. Sorkin, “On the Status of Highly Entropic Objects”, hep-th/0309218.Google Scholar
  7. 7.
    D. Marolf, D. Minic and S. F. Ross, “Notes on spacetime thermodynamics and the observer-dependence of entropy,” arXiv:hep-th/0310022.Google Scholar
  8. 8.
    R. M. Wald, “The thermodynamics of black holes,” Living Rev. Rel. 4, 6 (2001) [arXiv:gr-qc/9912119].MATHGoogle Scholar
  9. 9.
    G. ‘t Hooft, “On The Quantum Structure Of A Black Hole,” Nucl. Phys. B 256, 727 (1985).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    S. Mukohyama, “Aspects of black hole entropy,” arXiv:gr-qc/9912103.Google Scholar
  11. 11.
    R. Brustein and A. Yarom, “Thermodynamics and area in Minkowski space: Heat capacity of entanglement,” arXiv:hep-th/0311029.Google Scholar
  12. 12.
    R. D. Sorkin, “On The Entropy Of The Vacuum Outside A Horizon,” Gen. Rel. Grav., proceedings of the GR10 Conference, Padova 1983, ed. B. Bertotti, F. de Felice, A. Pascolini (Consiglio Nazionale della Ricerche, Roma, 1983) Vol. 2; L. Bombelli, R. K. Koul, J. H. Lee and R. D. Sorkin, “A Quantum Source Of Entropy For Black Holes,” Phys. Rev. D 34, 373 (1986); M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71, 666 (1993) [arXiv:hep-th/9303048].Google Scholar
  13. 13.
    R. D. Sorkin, “How wrinkled is the surface of a black hole?,” arXiv:gr-qc/9701056.Google Scholar
  14. 14.
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Corrections to macroscopic supersymmetric black-hole entropy,” Phys. Lett. B 451, 309 (1999) [arXiv:hep-th/9812082]; G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Deviations from the area law for supersymmetric black holes,” Fortsch. Phys. 48, 49 (2000) [arXiv:hep-th/9904005]; G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Area law corrections from state counting and supergravity,” Class. Quant. Grav. 17, 1007 (2000) [arXiv:hep-th/9910179].MathSciNetCrossRefADSMATHGoogle Scholar
  15. 15.
    C. Misner, K. Thorne, and J. Wheeler, Gravitation (W.H. Freeman and Co., New York, 1970).Google Scholar
  16. 16.
    J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].MATHMathSciNetADSGoogle Scholar
  17. 17.
    G. B. Cook and A. M. Abrahams, “Horizon Structure Of Initial Data Sets For Axisymmetric Two Black Hole Collisions,” Phys. Rev. D 46, 702 (1992).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    P. M. Alsing, D. McMahon and G. J. Milburn, “Teleportation in a non-inertial frame,” arXiv:quant-ph/0311096.; P. M. Alsing and G. J. Milburn, “Teleportation with a uniformly accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003) [arXiv:quant-ph/0302179].Google Scholar
  19. 19.
    L. Susskind, L. Thorlacius, and J. Ugglum, “The stretched horizon and black hole complementarity”, Phys. Rev. D 48, 3743 (1993) [arXiv:hep-th/9306069].MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    L. Susskind and L. Thorlacius, “Gedanken experiments involving black holes,” Phys. Rev. D 49, 966 (1994) [arXiv:hep-th/9308100].MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    K. S. Thorne, R.H. Price, and D. A. Macdonald, Black Holes: The Membrane Paragdigm, (Yale University Press, 1986).Google Scholar
  22. 22.
    A. Sen, “Extremal black holes and elementary string states”, Mod. Phys. Lett. A 10, 2081 (1995) [arXiv:hep-th/9204099].CrossRefADSGoogle Scholar
  23. 23.
    N. Ilizuka, D. Kabar, G. Lifschytz, and D. A. Lowe, “Stretched Horizons, Quasi-particles, and Quasinormal modes,” Phys. Rev. D 68 084021 (2003) [arXiv:hep-th/0306209]; N. Ilizuka, D. Kabar, G. Lifschytz, and D. A. Lowe, “Quasiparticle picture of black holes and the entropy area relation,” Phys. Rev. D 67 124001 (2003) [arXiv:hep-th/0212246].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Donald Marolf
    • 1
  1. 1.Physics DepartmentUCSBSanta Barbara

Personalised recommendations