Advertisement

Quantum Gravity Phenomenology and Lorentz Violation

  • Ted Jacobson
  • Stefano Liberati
  • David Mattingly
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)

Keywords

Quantum Gravity Lorentz Symmetry Crab Nebula Lorentz Violation Ultra High Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rept. 215, 203 (1992).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    G. Amelino-Camelia, Lect. Notes Phys. 541, 1 (2000) [arXiv:gr-qc/9910089].MATHMathSciNetADSCrossRefGoogle Scholar
  3. 3.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966) [Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)].CrossRefADSGoogle Scholar
  4. 4.
    T. Jacobson, S. Liberati and D. Mattingly, Phys. Rev. D 67, 124011 (2003) [arXiv:hep-ph/0209264].CrossRefADSGoogle Scholar
  5. 5.
    D. De Marco, P. Blasi and A. V. Olinto, Astropart. Phys. 20, 53 (2003) [arXiv:astro-ph/0301497].CrossRefADSGoogle Scholar
  6. 6.
    http://www.auger.org/Google Scholar
  7. 7.
    See, e.g. P. A. M. Dirac, Nature 168, 906–907 (1951); J. D. Bjorken, Ann. Phys. 24, 174 (1963); P. Phillips, Physical Review 146, 967 (1966); D.I. Blokhintsev, Usp. Fiz. Nauk. 89, 185 (1966) [Sov. Phys. Usp. 9, 405 (1966)]; L.B. Rédei, Phys. Rev. 162, 1299–1301 (1967); T. G. Pavlopoulos, Phys. Rev. 159, 1106 (1967); D.A. Kirzhnits and V.A. Chechin, Yad. Fiz. 15, 1051 (1972) [Sov. J. Nucl. Phys. 15, 585 (1972)].MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 1643 (2002) [arXiv:gr-qc/0210063].MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    C.M. Will and K. Nordvedt, Jr., Astrophys. J. 177, 757 (1972); K. Nordvedt, Jr. and C.M. Will, Astrophys. J. 177, 775 (1972); R.W. Hellings and K. Nordvedt, Jr., Phys. Rev. D7, 3593 (1973).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 141, 153 (1978); S. Chadha and H. B. Nielsen, Nucl. Phys. B 217, 125 (1983); H. B. Nielsen and I. Picek, Nucl. Phys. B 211, 269 (1983) [Addendum-ibid. B 242, 542 (1984)]; J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. B 176, 61 (1980). A. Zee, Phys. Rev. D 25, 1864 (1982).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    See, for example, M. Gasperini, Class. Quantum Grav. 4, 485 (1987); Gen. Rel. Grav. 30, 1703 (1998); and references therein.MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    See M. Haugan and C. Will, Physics Today, May 1987; C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1993), and references therein.Google Scholar
  13. 13.
    V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989).CrossRefADSGoogle Scholar
  14. 14.
    T. Jacobson, Phys. Rev. D 44, 1731 (1991).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    W. G. Unruh, Phys. Rev. D 51, 2827–2838 (1995), [arXiv:gr-qc/9409008].MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    See e.g. J. Martin and R. Brandenberger, Phys. Rev. D 68, 063513 (2003) [arXiv:hep-th/0305161] and references therein.CrossRefADSGoogle Scholar
  17. 17.
    L. Gonzalez-Mestres, “Lorentz symmetry violation and high-energy cosmic rays,”, [arXiv:physics/9712005].Google Scholar
  18. 18.
    D. Colladay and V. A. Kostelecky, Phys. Rev. D 58, 116002 (1998), [arXiv:hep-ph/9809521].CrossRefADSGoogle Scholar
  19. 19.
    V. A. Kostelecky, Proceedings of the “Second Meeting on CPT and Lorentz Symmetry,” Bloomington, Usa, 15–18 August 2001”. Singapore, World Scientific (2002).Google Scholar
  20. 20.
    S. R. Coleman and S. L. Glashow, “Evading the GZK cosmic-ray cutoff,” [arXiv:hep-ph/9808446].Google Scholar
  21. 21.
    S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999) [arXiv:hep-ph/9812418].CrossRefADSGoogle Scholar
  22. 22.
    G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar, Nature 393, 763 (1998) [arXiv:astro-ph/9712103].CrossRefADSGoogle Scholar
  23. 23.
    R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999) [arXiv:gr-qc/9809038].MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    C. N. Kozameh and M. F. Parisi, “Lorentz invariance and the semiclassical approximation of loop quantum gravity,” [arXiv:gr-qc/0310014].Google Scholar
  25. 25.
    R. J. Gleiser and C. N. Kozameh, Phys. Rev. D 64, 083007 (2001) [arXiv:gr-qc/0102093].CrossRefADSGoogle Scholar
  26. 26.
    T. A. Jacobson, S. Liberati, D. Mattingly and F. W. Stecker, “New limits on Planck scale Lorentz violation in QED,” [arXiv:astro-ph/0309681].Google Scholar
  27. 27.
    I. G. Mitrofanov, Nature 426, 139 (2003).CrossRefADSGoogle Scholar
  28. 28.
    R. J. Protheroe and H. Meyer, Phys. Lett. B 493, 1 (2000) [arXiv:astro-ph/0005349].CrossRefADSGoogle Scholar
  29. 29.
    A. K. Konopelko, A. Mastichiadis, J. G. Kirk, O. C. de Jager and F. W. Stecker, Astrophys. J. 597, 851 (2003) [arXiv:astro-ph/0302049].CrossRefADSGoogle Scholar
  30. 30.
    R. C. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) [arXiv:hep-ph/0301124].MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    T. Jacobson, S. Liberati and D. Mattingly, Nature 424, 1019 (2003) [arXiv:astro-ph/0212190].CrossRefADSGoogle Scholar
  32. 32.
    G. Amelino-Camelia, “Improved limit on quantum-spacetime modifications of Lorentz symmetry from observations of gamma-ray blazars,” [arXiv:gr-qc/0212002]; “A perspective on quantum gravity phenomenology,” [arXiv:gr-qc/0402009].Google Scholar
  33. 33.
    E. Fischbach, M. P. Haugan, D. Tadic and H. Y. Cheng, Phys. Rev. D 32, 154 (1985).CrossRefADSGoogle Scholar
  34. 34.
    C. P. Burgess, J. Cline, E. Filotas, J. Matias and G. D. Moore, JHEP 0203, 043 (2002) [arXiv:hep-ph/0201082].CrossRefADSGoogle Scholar
  35. 35.
    J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, arXiv:gr-qc/0312044.Google Scholar
  36. 36.
    R. Lehnert, Phys. Rev. D 68, 085003 (2003) [arXiv:gr-qc/0304013].MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    V. A. Kostelecky and R. Lehnert, Phys. Rev. D 63, 065008 (2001) [arXiv:hep-th/0012060].MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    A. Perez and D. Sudarsky, “Comments on challenges for quantum gravity,” [arXiv:gr-qc/0306113].Google Scholar
  39. 39.
    J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, “Lorentz invari-ance: An additional fine-tuning problem,” [arXiv:gr-qc/0403053].Google Scholar
  40. 40.
    See e.g. M. Creutz, Quarks, gluons and lattices (Cambridge Univ. Press, 1985); G. Moore, “Informal Lectures on Lattice Gauge Theory” http://www.physics.mcgill.ca/∼guymoore/latt_lectures.pdf.Google Scholar
  41. 41.
    D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky and C. D. Lane, Phys. Rev. Lett. 85, 5038 (2000) [Erratum-ibid. 89, 209902 (2002)] [arXiv:physics/0007049].CrossRefADSGoogle Scholar
  42. 42.
    Y. J. Ng, D. S. Lee, M. C. Oh and H. van Dam, Phys. Lett. B 507, 236 (2001) [arXiv:hep-ph/0010152].CrossRefADSGoogle Scholar
  43. 43.
    R. Aloisio, P. Blasi, A. Galante, P. L. Ghia and A. F. Grillo, Astropart. Phys. 19, 127 (2003) [arXiv:astro-ph/0205271].CrossRefADSGoogle Scholar
  44. 44.
    B. R. Heckel et al., Proceedings of the International COnference on Orbis Scientiae, 1999, Coral Gables, Kluwer, 2000.; B. R. Heckel, http://www.npl.washington.edu/eotwash/publications/cpt01.pdf.Google Scholar
  45. 45.
    S. M. Carroll, G. B. Field and R. Jackiw, Phys. Rev. D 41, 1231 (1990).CrossRefADSGoogle Scholar
  46. 46.
    V. A. Kostelecky and M. Mewes, Phys. Rev. Lett. 87, 251304 (2001) [arXiv:hep-ph/0111026]; Phys. Rev. D 66, 056005 (2002) [arXiv:hep-ph/0205211].CrossRefADSGoogle Scholar
  47. 47.
    W. Coburn and S. E. Boggs, Nature 423, 415 (2003) [arXiv:astro-ph/0305377].CrossRefADSGoogle Scholar
  48. 48.
    R. E. Rutledge and D. B. Fox, “Re-Analysis of Polarization in the Gamma-ray flux of GRB 021206,” [arXiv:astro-ph/0310385].Google Scholar
  49. 49.
    S. E. Boggs and W. Coburn, “Statistical Uncertainty in the Re-Analysis of Polarization in GRB021206,” [arXiv:astro-ph/0310515].Google Scholar
  50. 50.
  51. 51.
    B. E. Schaefer, Phys. Rev. Lett. 82, 4964 (1999) [astro-ph/9810479].CrossRefADSGoogle Scholar
  52. 52.
    S. D. Biller et al., Phys. Rev. Lett. 83, 2108 (1999) [arXiv:gr-qc/9810044].CrossRefADSGoogle Scholar
  53. 53.
    P. Kaaret, “Pulsar radiation and quantum gravity,” [arXiv:astro-ph/9903464].Google Scholar
  54. 54.
    T. J. Konopka and S. A. Major, New J. Phys. 4, 57 (2002) [arXiv:hep-ph/0201184].CrossRefADSGoogle Scholar
  55. 55.
    W. Kluzniak, Astropart. Phys. 11, 117 (1999).CrossRefADSGoogle Scholar
  56. 56.
    G. Amelino-Camelia and T. Piran, Phys. Rev. D 64, 036005 (2001) [arXiv:astro-ph/0008107].CrossRefADSGoogle Scholar
  57. 57.
    F. W. Stecker and S. L. Glashow, Astropart. Phys. 16, 97 (2001) [arXiv:astro-ph/0102226].CrossRefADSGoogle Scholar
  58. 58.
    T. Jacobson, S. Liberati and D. Mattingly, “Comments on ‘Improved limit on quantum-spacetime modifications of Lorentz symmetry from observations of gamma-ray blazars’,” [arXiv:gr-qc/0303001].Google Scholar
  59. 59.
    F. W. Stecker, Astropart. Phys. 20, 85 (2003) [arXiv:astro-ph/0308214].CrossRefADSGoogle Scholar
  60. 60.
    D. Mattingly and B. McElrath, To be published.Google Scholar
  61. 61.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 12, 1633 (2003) [arXiv:gr-qc/0305057].CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ted Jacobson
    • 1
    • 2
  • Stefano Liberati
    • 3
    • 4
  • David Mattingly
    • 5
  1. 1.Institut d’Astrophysique de ParisParisFrance
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUSA
  3. 3.SISSATriesteItaly
  4. 4.INFNTrieste
  5. 5.Department of PhysicsUniversity of CaliforniaDavis

Personalised recommendations