Gauge Theory on the Fuzzy Sphere and Random Matrices

  • Harold Steinacker
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)


Gauge Theory Partition Function Matrix Model Gauge Symmetry Wilson Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Steinacker, Quantized Gauge Theory on the Fuzzy Sphere as Random Matrix Model, Nucl. Phys. B679, vol 1–2 (2004) 66–98MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    A. A. Migdal, Recursion equations in gauge theories, Sov. Phys. JETP 42 (1976) 413; B. E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A5 (1990) 693Google Scholar
  3. 3.
    J. Madore, The Fuzzy Sphere, Class. Quant. Grav. 9, 69 (1992)MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    U. Carow-Watamura, S. Watamura, Noncommutative Geometry and Gauge Theory on Fuzzy Sphere, Commun. Math. Phys. 212 (2000) 395MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303.MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    C. Itzykson, J. B. Zuber The planar approximation. 2, Journ. Math. Phys. 21 (1980), 411MathSciNetCrossRefADSMATHGoogle Scholar
  7. 7.
    C. S. Chu, J. Madore and H. Steinacker, Scaling limits of the fuzzy sphere at one loop, JHEP 0108 (2001) 038MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Harold Steinacker
    • 1
  1. 1.Institut für theoretische PhysikLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations