Noncommutative Gauge Theory on the q-Deformed Euclidean Plane

  • Frank Meyer
  • Harold Steinacker
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)


Gauge Transformation Quantum Group Invariant Action Star Product Symmetric Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Pauli: Scientific Correspondence, Vol. II (Springer 1985) p 15.Google Scholar
  2. 2.
    M. R. Douglas and N. A. Nekrasov: Rev. Mod. Phys. 73, 977 (2001).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    F. Meyer and H. Steinacker: Int. J. Mod. Phys. A, arXiv: hep-th/0309053.Google Scholar
  4. 4.
    M. Chaichian and A. P. Demichev: Phys. Lett. B320, 273 (1994).MathSciNetADSGoogle Scholar
  5. 5.
    H. T. Koelink: Duke Math. J. 76, 483 (1994).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Madore, S. Schraml, P. Schupp and J. Wess: Eur. Phys. J. C16, 161 (2000).MathSciNetADSGoogle Scholar
  7. 7.
    F. Meyer: Models of Gauge Field Theory on Noncommutative Spaces, Diploma-Thesis, Univ. of Munich, Chair Prof. J. Wess (2003), arXiv: hep-th/0308186.Google Scholar
  8. 8.
    N. Seiberg and E. Witten: JHEP 09, 032 (1999).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frank Meyer
    • 1
    • 2
  • Harold Steinacker
    • 2
  1. 1.Max-Planck-Institute for Physics (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.University of MunichMünchenGermany

Personalised recommendations