Advertisement

The Dressed Sliver in VSFT

  • Loriano Bonora
  • Carlo Maccaferri
  • Predrag Prester
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)

Keywords

Open String Matter Part Vacuum String Tachyon Condensation Eigenvalue Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253.MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    L. Rastelli, A. Sen and B. Zwiebach, “Vacuum string field theory,” arXiv:hep-th/0106010.Google Scholar
  3. 3.
    V.A. Kostelecky and R. Potting, Analytical construction of a nonperturbative vacuum for the open bosonic string, Phys. Rev. D 63 (2001) 046007 [arXiv:hep-th/0008252].MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 353 [arXiv:hep-th/0012251].MathSciNetGoogle Scholar
  5. 5.
    L. Rastelli, A. Sen and B. Zwiebach, Classical solutions in string field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 393 [arXiv:hep-th/0102112].MathSciNetGoogle Scholar
  6. 6.
    L. Rastelli, A. Sen and B. Zwiebach, Half-strings, Projectors, and Multiple D-branes in Vacuum String Field Theory, JHEP 0111 (2001) 035 [arXiv:hep-th/0105058].MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    T. Okuda, The Equality of Solutions in Vacuum String Field Theory, Nucl. Phys. B 641 (2002) 393 [arXiv:hep-th/0201149].MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Star Algebra Projectors, JHEP 0204 (2002) 060 [arXiv:hep-th/0202151].MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    H. Hata and T. Kawano, Open string states around a classical solution in vacuum string field theory, JHEP 0111 (2001) 038 [arXiv:hep-th/0108150].MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    H. Hata and S. Moriyama, Observables as Twist Anomaly in Vacuum String Field Theory, JHEP 0201 (2002) 042 [arXiv:hep-th/0111034].MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    H. Hata, S. Moriyama and S. Teraguchi, “Exact results on twist anomaly,” JHEP 0202 (2002) 036 [arXiv:hep-th/0201177].MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    H. Hata and S. Moriyama, Reexamining Classical Solution and Tachyon Mode in Vacuum String Field Theory, Nucl. Phys. B 651 (2003) 3 [arXiv:hep-th/0206208].MathSciNetCrossRefADSMATHGoogle Scholar
  13. 13.
    L. Rastelli, A. Sen and B. Zwiebach, A note on a Proposal for the Tachyon State in Vacuum String Field Theory, JHEP 0202 (2002) 034 [arXiv:hep-th/0111153].MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    H. Hata and H. Kogetsu Higher Level Open String States from Vacuum String Field Theory, JHEP 0209 (2002) 027, [arXiv:hep-th/0208067].MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    J.R. David, Excitations on wedge states and on the sliver, JHEP 0107 (2001) 024 [arXiv:hep-th/0105184].CrossRefADSGoogle Scholar
  16. 16.
    Y. Okawa, Open string states and D-brane tension form vacuum string field theory, JHEP 0207 (2002) 003 [arXiv:hep-th/0204012].MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Y. Okawa, “Some exact computations on the twisted butterfly state in string field theory,” [arXiv:hep-tharXiv:hep-th/0310264.]Google Scholar
  18. 18.
    K. Okuyama, Ghost Kinetic Operator of Vacuum String Field Theory, JHEP 0201 (2002) 027 [arXiv:hep-th/0201015].MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    D.M. Belov, A. Konechny, On spectral density of Neumann matrices, Phys. Lett. B 558 (2003) 111–118 [arXiv:hep-th/0210169].MathSciNetCrossRefADSMATHGoogle Scholar
  20. 20.
    D.J. Gross and A. Jevicki, Operator Formulation of Interacting String Field Theory, Nucl. Phys. B283 (1987) 1.MathSciNetADSGoogle Scholar
  21. 21.
    L. Bonora, C. Maccaferri, P. Prester, Dressed Sliver solutions in Vacuum String Field Theory, [arXiv:hep-th/0311198], to be published in JHEP.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Loriano Bonora
    • 1
    • 2
  • Carlo Maccaferri
    • 1
    • 2
  • Predrag Prester
    • 3
  1. 1.International School for Advanced Studies (SISSA/ISAS)TriesteItaly
  2. 2.Sezione di TriesteINFNTrieste
  3. 3.Department of Theoretical Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations