Neutrinos — Inner Properties and Role as Astrophysical Messengers

  • Georg G. Raffelt
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)


Neutrino Mass Neutrino Oscillation Wilkinson Microwave Anisotropy Probe Atmospheric Neutrino Baryon Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Gonzalez-Garcia and Y. Nir “Developments in neutrino physics,” Rev. Mod. Phys. 75, 345 (2003) [hep-ph/0202058].CrossRefADSGoogle Scholar
  2. 2.
    G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Rotunno, “Solar neutrino oscillation parameters after first KamLAND results,” Phys. Rev. D 67, 073002 (2003) [hep-ph/0212127]. Addendum hep-ph/0308055.CrossRefADSGoogle Scholar
  3. 3.
    J. N. Bahcall, M. C. Gonzalez-Garcia and C. Pena-Garay, “Solar neutrinos before and after KamLAND,” JHEP 02, 009 (2003) [hep-ph/0212147].CrossRefADSGoogle Scholar
  4. 4.
    P. C. de Holanda and A. Y. Smirnov, “LMA MSW solution of the solar neutrino problem and first KamLAND results,” JCAP 02, 001 (2003) [hep-ph/0212270].Google Scholar
  5. 5.
    M. C. Gonzalez-Garcia and C. Pena-Garay, “Three-neutrino mixing after the first results from K2K and KamLAND,” Phys. Rev. D 68, 093003 (2003) [hep-ph/0306001].CrossRefADSGoogle Scholar
  6. 6.
    M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, “Status of three-neutrino oscillations after the SNO-salt data,” Phys. Rev. D 68, 113010 (2003) [hep-ph/0309130].CrossRefADSGoogle Scholar
  7. 7.
    E. D. Church, K. Eitel, G. B. Mills and M. Steidl, “Statistical analysis of different µ →v̄ e searches,” Phys. Rev. D 66, 013001 (2002) [hep-ex/0203023].CrossRefADSGoogle Scholar
  8. 8.
    M. Maltoni, T. Schwetz, M. A. Tortola and J. W. Valle, “Global analysis of neutrino oscillation data in four-neutrino schemes,” Nucl. Phys. Proc. Suppl. 114, 203 (2003) [hep-ph/0209368].CrossRefADSGoogle Scholar
  9. 9.
    G. Barenboim and J. Lykken, “A model of CPT violation for neutrinos,” Phys. Lett. B 554, 73 (2003) [hep-ph/0210411].CrossRefADSMATHGoogle Scholar
  10. 10.
    M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, “Status of the CPT violating interpretations of the LSND signal,” Phys. Rev. D 68, 053007 (2003) [hep-ph/0306226].CrossRefADSGoogle Scholar
  11. 11.
    R. Tayloe [MiniBooNE Collaboration], “The Miniboone Experiment: Status And Plans,” Nucl. Phys. Proc. Suppl. 118, 157 (2003). See also http://wwwboone.fnal.govCrossRefADSGoogle Scholar
  12. 12.
    Neutrino Factory and Muon Storage Rings at CERN Scholar
  13. 13.
    Neutrino Factory Working Group Scholar
  14. 14.
    V. D. Barger, S. Geer, R. Raja and K. Whisnant, “Exploring neutrino oscillations with superbeams,” Phys. Rev. D 63, 113011 (2001) [hep-ph/0012017].CrossRefADSGoogle Scholar
  15. 15.
    A. Cervera, A. Donini, M. B. Gavela, J. J. Gomez Cadenas, P. Hernandez, O. Mena and S. Rigolin, “Golden measurements at a neutrino factory,” Nucl. Phys. B 579, 17 (2000); Erratum ibid. 593, 731 (2001) [hep-ph/0002108].CrossRefADSGoogle Scholar
  16. 16.
    M. Freund, P. Huber and M. Lindner, “Systematic exploration of the neutrino factory parameter space including errors and correlations,” Nucl. Phys. B, 615, 331 (2001) [hep-ph/0105071].CrossRefADSGoogle Scholar
  17. 17.
    P. Huber, M. Lindner, T. Schwetz and W. Winter, “Reactor neutrino experiments compared to superbeams,” Nucl. Phys. B 665, 487 (2003) [hep-ph/0303232].CrossRefADSGoogle Scholar
  18. 18.
    H. Minakata and H. Sugiyama, “Exploring leptonic CP violation by reactor and neutrino superbeam experiments,” Phys. Lett. B 580, 216 (2004) [hep-ph/0309323].CrossRefADSGoogle Scholar
  19. 19.
    C. Weinheimer, “Direct neutrino mass search,” hep-ex/0210050.Google Scholar
  20. 20.
    S. Hannestad and G. Raffelt, “Cosmological mass limits on neutrinos, axions, and other light particles,” hep-ph/0312154.Google Scholar
  21. 21.
    S. Hannestad, “Neutrino masses and the number of neutrino species from WMAP and 2dFGRS,” JCAP 0305, 004 (2003) [astro-ph/0303076].ADSGoogle Scholar
  22. 22.
    O. Elgaroy and O. Lahav, “The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP,” JCAP 0304, 004 (2003) [astro-ph/0303089].ADSGoogle Scholar
  23. 23.
    D. N. Spergel et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209].CrossRefADSGoogle Scholar
  24. 24.
    S. W. Allen, R. W. Schmidt and S. L. Bridle, “A preference for a non-zero neutrino mass from cosmological data,” Mon. Not. Roy. Astron. Soc. 346, 593 (2003) [astro-ph/0306386].CrossRefADSGoogle Scholar
  25. 25.
    V. Barger, D. Marfatia and A. Tregre, “Neutrino mass limits from SDSS, 2dF-GRS and WMAP,” hep-ph/0312065.Google Scholar
  26. 26.
    K. Abazajian et al. [SDSS Collaboration], “The First Data Release of the Sloan Digital Sky Survey,” Astron. J. 126, 2081 (2003) [astro-ph/0305492].CrossRefADSGoogle Scholar
  27. 27.
    W. Hu, D. J. Eisenstein and M. Tegmark, “Weighing neutrinos with galaxy surveys,” Phys. Rev. Lett. 80, 5255 (1998) [astro-ph/9712057].CrossRefADSGoogle Scholar
  28. 28.
    S. Hannestad, “Can cosmology detect hierarchical neutrino masses?,” Phys. Rev. D 67, 085017 (2003) [astro-ph/0211106].CrossRefADSGoogle Scholar
  29. 29.
    W. Hu, “Dark energy and matter evolution from lensing tomography,” Phys. Rev. D 66, 083515 (2002) [astro-ph/0208093].CrossRefADSGoogle Scholar
  30. 30.
    K. N. Abazajian and S. Dodelson, “Neutrino mass and dark energy from weak lensing,” Phys. Rev. Lett. 91, 041301 (2003) [astro-ph/0212216].CrossRefADSGoogle Scholar
  31. 31.
    P. Crotty, J. Lesgourgues and S. Pastor, “Measuring the cosmological background of relativistic particles with WMAP,” Phys. Rev. D 67, 123005 (2003) [astro-ph/0302337].CrossRefADSGoogle Scholar
  32. 32.
    E. Pierpaoli, “Constraints on the cosmic neutrino background,” Mon. Not. Roy. Astron. Soc. 342, L63 (2003) [astro-ph/0302465].CrossRefADSGoogle Scholar
  33. 33.
    H. S. Kang and G. Steigman, “Cosmological constraints on neutrino degeneracy,” Nucl. Phys. B 372, 494 (1992).CrossRefADSGoogle Scholar
  34. 34.
    C. Lunardini and A. Y. Smirnov, “High-energy neutrino conversion and the lepton asymmetry in the universe,” Phys. Rev. D 64, 073006 (2001) [hep-ph/0012056].CrossRefADSGoogle Scholar
  35. 35.
    A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt and D. V. Semikoz, “Cosmological bounds on neutrino degeneracy improved by flavor oscillations,” Nucl. Phys. B 632, 363 (2002) [hep-ph/0201287].CrossRefADSGoogle Scholar
  36. 36.
    Y. Y. Wong, “Analytical treatment of neutrino asymmetry equilibration from flavour oscillations in the early universe,” Phys. Rev. D 66, 025015 (2002) [hep-ph/0203180].CrossRefADSGoogle Scholar
  37. 37.
    K. N. Abazajian, J. F. Beacom and N. F. Bell, “Stringent constraints on cosmological neutrino antineutrino asymmetries from synchronized flavor transformation,” Phys. Rev. D 66, 013008 (2002) [astro-ph/0203442].CrossRefADSGoogle Scholar
  38. 38.
    S. Samuel, “Neutrino oscillations in dense neutrino gases,” Phys. Rev. D 48, 1462 (1993).CrossRefADSGoogle Scholar
  39. 39.
    S. Pastor, G. G. Raffelt and D. V. Semikoz, “Physics of synchronized neutrino oscillations caused by self-interactions,” Phys. Rev. D 65, 053011 (2002) [hep-ph/0109035].CrossRefADSGoogle Scholar
  40. 40.
    S. Pastor and G. Raffelt, “Flavor oscillations in the supernova hot bubble region: Nonlinear effects of neutrino background,” Phys. Rev. Lett. 89, 191101 (2002) [astro-ph/0207281].CrossRefADSGoogle Scholar
  41. 41.
    M. Fukugita and T. Yanagida, “Baryogenesis without grand unification,” Phys. Lett. B 174, 45 (1986).CrossRefADSGoogle Scholar
  42. 42.
    W. Buchmüller and M. Plümacher, “Neutrino masses and the baryon asymmetry,” Int. J. Mod. Phys. A 15, 5047 (2000) [hep-ph/0007176].CrossRefADSGoogle Scholar
  43. 43.
    W. Buchmüller, P. Di Bari and M. Plümacher, “The neutrino mass window for baryogenesis,” Nucl. Phys. B 665, 445 (2003) [hep-ph/0302092].CrossRefADSGoogle Scholar
  44. 44.
    H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney and I. V. Krivosheina, “Evidence for neutrinoless double beta decay,” Mod. Phys. Lett. A 16, 2409 (2001) [hep-ph/0201231].CrossRefADSGoogle Scholar
  45. 45.
    H. V. Klapdor-Kleingrothaus, “Neutrinoless double-beta decay: Status of evidence and future,” Phys. Atom. Nucl. 65, 2135 (2002) [Yad. Fiz. 65, 2198 (2002)].CrossRefADSGoogle Scholar
  46. 46.
    C. E. Aalseth et al., “Comment on ‘Evidence for neutrinoless double beta decay’,” Mod. Phys. Lett. A 17, 1475 (2002) [hep-ex/0202018].CrossRefADSGoogle Scholar
  47. 47.
    O. Cremonesi, “Neutrinoless double beta decay: Present and future,” Nucl. Phys. Proc. Suppl. 118, 287 (2003) [hep-ex/0210007].CrossRefADSGoogle Scholar
  48. 48.
    G. Sigl, “Ultrahigh-energy cosmic rays: A probe of physics and astrophysics at extreme energies,” Science 291, 73 (2001) [astro-ph/0104291].CrossRefADSGoogle Scholar
  49. 49.
    F. Halzen and D. Hooper, “High-energy neutrino astronomy: The cosmic ray connection,” Rept. Prog. Phys. 65, 1025 (2002) [astro-ph/0204527].CrossRefADSGoogle Scholar
  50. 50.
    E. Waxman, “Astrophysical sources of high energy neutrinos,” Nucl. Phys. Proc. Suppl. 118, 353 (2003) [astro-ph/0211358].CrossRefADSGoogle Scholar
  51. 51.
    J. Ahrens et al. (AMANDA Collaboration), “Search for point sources of high energy neutrinos with AMANDA,” Astrophys. J. 583, 1040 (2003) [astro-ph/0208006].CrossRefADSGoogle Scholar
  52. 52.
    F. Halzen, “High-energy neutrino astronomy: From AMANDA to IceCube,” astro-ph/0311004.Google Scholar
  53. 53.
    J. Carr, “Neutrino telescopes,” Nucl. Phys. Proc. Suppl. 113, 26 (2002).CrossRefADSGoogle Scholar
  54. 54.
    A. Letessier-Selvon, “Auger: A large air shower array and neutrino telescope,” Nucl. Phys. Proc. Suppl. 118, 399 (2003) [astro-ph/0208526].CrossRefADSGoogle Scholar
  55. 55.
    F. Halzen, J. E. Jacobsen and E. Zas, “Ultra-Transparent Antarctic Ice as a Supernova Detector,” Phys. Rev. D 53, 7359 (1996) [astro-ph/9512080].CrossRefADSGoogle Scholar
  56. 56.
    J. Ahrens et al. (AMANDA Collaboration), “Search for supernova neutrino-bursts with the AMANDA detector,” Astropart. Phys. 16, 345 (2002) [astro-ph/0105460].CrossRefADSGoogle Scholar
  57. 57.
    A. S. Dighe, M. T. Keil and G. G. Raffelt, “Detecting the neutrino mass hierarchy with a supernova at IceCube,” JCAP 0306, 005 (2003) [hep-ph/0303210].ADSGoogle Scholar
  58. 58.
    T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, “Future detection of supernova neutrino burst and explosion mechanism,” Astrophys. J. 496, 216 (1998) [astro-ph/9710203].CrossRefADSGoogle Scholar
  59. 59.
    The Supernova Early Warning System (SNEWS) Scholar
  60. 60.
    G. G. Raffelt, “Particle physics from stars,” Ann. R.ev. Nucl. Part. Sci. 49, 163 (1999) [hep-ph/9903472].CrossRefADSGoogle Scholar
  61. 61.
    J. F. Beacom, R. N. Boyd and A. Mezzacappa, “Black hole formation in core collapse supernovae and time-of-fight measurements of the neutrino masses,” Phys. Rev. D 63, 073011 (2001) [astro-ph/0010398].CrossRefADSGoogle Scholar
  62. 62.
    A. S. Dighe and A. Y. Smirnov, “Identifying the neutrino mass spectrum from the neutrino burst from a supernova,” Phys. Rev. D 62, 033007 (2000) [hep-ph/9907423].CrossRefADSGoogle Scholar
  63. 63.
    K. Takahashi and K. Sato, “Earth effects on supernova neutrinos and their implications for neutrino parameters,” Phys. Rev. D 66, 033006 (2002) [hep-ph/0110105].CrossRefADSGoogle Scholar
  64. 64.
    K. Takahashi and K. Sato, “Effects of neutrino oscillation on supernova neutrino: Inverted mass hierarchy,” hep-ph/0205070.Google Scholar
  65. 65.
    C. Lunardini and A. Y. Smirnov, “Probing the neutrino mass hierarchy and the 13-mixing with supernovae,” hep-ph/0302033.Google Scholar
  66. 66.
    A. S. Dighe, M. T. Keil and G. G. Raffelt, “Identifying earth matter effects on supernova neutrinos at a single detector,” JCAP 0306, 006 (2003) [hep-ph/0304150].ADSGoogle Scholar
  67. 67.
    R. Tomas, D. Semikoz, G. G. Raffelt, M. Kachelriess and A. S. Dighe, “Supernova pointing with low-and high-energy neutrino detectors,” Phys. Rev. D 68, 093013 (2003) [hep-ph/0307050].CrossRefADSGoogle Scholar
  68. 68.
    A. S. Dighe, M. Kachelriess, G. G. Raffelt and R. Tomas, “Signatures of supernova neutrino oscillations in the earth mantle and core,” JCAP 0401, 004 (2004) [hep-ph/0311172].ADSGoogle Scholar
  69. 69.
    G. G. Raffelt, “Mu-and tau-neutrino spectra formation in supernovae,” Astrophys. J. 561, 890 (2001) [astro-ph/0105250].CrossRefADSGoogle Scholar
  70. 70.
    R. Buras, H. T. Janka, M. T. Keil, G. G. Raffelt and M. Rampp, “Electron-neutrino pair annihilation: A new source for muon and tau neutrinos in supernovae,” Astrophys. J. 587, 320 (2003) [astro-ph/0205006].CrossRefADSGoogle Scholar
  71. 71.
    M. T. Keil, G. G. Raffelt and H. T. Janka, “Monte Carlo study of supernova neutrino spectra formation,” Astrophys. J. 590, 971 (2003) [astro-ph/0208035].CrossRefADSGoogle Scholar
  72. 72.
    M. Malek et al. [Super-Kamiokande Collaboration], “Search for supernova relic neutrinos at Super-Kamiokande,” Phys. Rev. Lett. 90, 061101 (2003) [hep-ex/0209028].CrossRefADSGoogle Scholar
  73. 73.
    J. F. Beacom and M. R. Vagins, “GADZOOKS! Antineutrino spectroscopy with large water Cherenkov detectors,” hep-ph/0309300.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Georg G. Raffelt
    • 1
  1. 1.Max-Planck-Institut für Physik (Werner-Heiseberg-Institut)MünchenGermany

Personalised recommendations