Advertisement

Renormalisation Group Approach to Noncommutative Quantum Field Theory

  • Harald Grosse
  • Raimar Wulkenhaar
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)

Keywords

Riemann Surface Planar Graph Matrix Base Noncommutative Geometry Feynman Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Doplicher, K. Fredenhagen and J. E. Roberts, “The Quantum structure of space-time at the Planck scale and quantum fields,” Commun. Math. Phys. 172 (1995) 187 [arXiv:hep-th/0303037].MathSciNetCrossRefADSMATHGoogle Scholar
  2. 2.
    E. Schrödinger, “Über die Unanwendbarkeit der Geometrie im Kleinen,” Naturwiss. 31 (1934) 34.Google Scholar
  3. 3.
    A. Connes, “Noncommutative geometry,” Academic Press (1994).Google Scholar
  4. 4.
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, “Noncommutative perturbative dynamics,” JHEP 0002 (2000) 020 [arXiv:hep-th/9912072].CrossRefADSGoogle Scholar
  5. 5.
    N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 9909 (1999) 032 [arXiv:hep-th/9908142].MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker and J. C. Várilly, “Moyal planes are spectral triples,” arXiv:hep-th/0307241.Google Scholar
  7. 7.
    I. Chepelev and R. Roiban, “Renormalization of quantum field theories on non-commutative ℝd. I: Scalars,” JHEP 0005 (2000) 037 [arXiv:hep-th/9911098].MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    I. Chepelev and R. Roiban, “Convergence theorem for non-commutative Feynman graphs and renormalization,” JHEP 0103 (2001) 001 [arXiv:hep-th/0008090].MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    K. G. Wilson and J. B. Kogut, “The Renormalization Group And The Epsilon Expansion,” Phys. Rept. 12 (1974) 75.CrossRefADSGoogle Scholar
  10. 10.
    J. Polchinski, “Renormalization And Effective Lagrangians,” Nucl. Phys. B 231 (1984) 269.CrossRefADSGoogle Scholar
  11. 11.
    E. Langmann, R. J. Szabo and K. Zarembo, “Exact solution of noncommutative field theory in background magnetic fields,” Phys. Lett. B 569 (2003) 95 [arXiv:hep-th/0303082].MathSciNetCrossRefADSMATHGoogle Scholar
  12. 12.
    E. Langmann, R. J. Szabo and K. Zarembo, “Exact solution of quantum field theory on noncommutative phase spaces,” arXiv:hep-th/0308043.Google Scholar
  13. 13.
    R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” arXiv:math.CA/9602214.Google Scholar
  14. 14.
    H. Grosse and R. Wulkenhaar, “Power-counting theorem for non-local matrix models and renormalisation,” arXiv:hep-th/0305066.Google Scholar
  15. 15.
    H. Grosse and R. Wulkenhaar, “Renormalisation of ф 4 theory on noncommutative ℝ2 in the matrix base,” JHEP 0312 (2003) 019 [arXiv:hep-th/0307017].MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    H. Grosse, R. Wulkenhaar, “Renormalisation of ф 4 theory on noncommutative ℝ4 in the matrix base,” in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Harald Grosse
    • 1
  • Raimar Wulkenhaar
    • 2
  1. 1.Institut für Theoretische Physik der Universität WienWienAustria
  2. 2.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations