Self-Accelerated Universe

  • Boris P. Kosyakov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 98)


Dark Matter Dirac Equation Gravitational Wave World Line Mass Renormalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009, 1998; astro-ph/9805201; S. Perlmutter et al., “Measurement of Omega and Lambda from 42 high-redshift supernovae,” Astrophys. J. 517, 565, 1999; astro-ph/9812133.CrossRefADSGoogle Scholar
  2. 2.
    J. Frenkel, “Die Elektrodynamik des Rotierenden Electrons,” Z. Phys. 37, 243, 1926.MATHCrossRefADSGoogle Scholar
  3. 3.
    B. P. Kosyakov, “On inert properties of particles in classical theory,” hep-th/0208035.Google Scholar
  4. 4.
    E. Schrödinger, “Über die kräftfreie Bewegung in der relativistischen Quanten-mechanik,” Sitzungber. Preuss. Acad. Wiss. 24, 418, 1930.Google Scholar
  5. 5.
    J. D. Jackson, Classical Electrodynamics (New York: Wiley, 1962, 1975, and 1998).Google Scholar
  6. 6.
    F. Rohrlich, Classical Charged Particles (Reading: Addison-Wesley, 1965, and 1990).MATHGoogle Scholar
  7. 7.
    C. Teitelboim, “Splitting of Maxwell tensor: Radiation reaction without advanced fields,” Phys. Rev. D 1, 1572, 1970.MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    B. P. Kosyakov, “Exact solutions in the Yang-Mills-Wong theory,” Phys. Rev. D 57, 5032, 1998; hep-th/9902039.MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    A. O. Barut and D. Villarroel, “Radiation reaction and mass renormalization in scalar and tensor fields and linearized gravitation,” J. Phys. A 8, 156, 1975.MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    P. Havas and J. N. Goldberg, “Lorentz-invariant equations of motion of point masses in the general theory of relativity,” Phys. Rev. 128, 398, 1962.MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    E. G. P. Rowe and G. T. Rowe, “The classical equation of motion for a spinning point particle with charge and magnetic moment,” Phys. Rep. 149, 287, 1987.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Boris P. Kosyakov
    • 1
  1. 1.Russian Federal Nuclear Center-VNIIEFSarovRussia

Personalised recommendations