Skip to main content

Role of the Clinician in Adjusting Ventilator Parameters During Assisted Ventilation

  • Conference paper
  • 962 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dojat M, Harf A, Touchard D, Laforest M, Lemaire F, Brochard L (1996) Evaluation of a knowledge-based systemproviding ventilatory management and decision for extubation. Am J Respir Crit Care Med 153:997–1004

    PubMed  CAS  Google Scholar 

  2. Dojat M, Harf A, Touchard D, Lemaire F, Brochard L (2000) Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 161:1161–1166

    PubMed  CAS  Google Scholar 

  3. Anzueto A, Peters JI, Tobin MJ, et al (1997) Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons. Crit Care Med 25:1187–1190

    PubMed  CAS  Google Scholar 

  4. Le Bourdelles G, Viires N, Boczkowski J, Seta N, Pavlovic D, Aubier M (1994) Effects of mechanical ventilation on diaphragmatic contractile properties in rats. Am J Respir Crit Care Med 149:1539–1544

    PubMed  Google Scholar 

  5. Sassoon CS, Caiozzo VJ, Manka A, Sieck GC (2002) Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 92:2585–2595

    PubMed  Google Scholar 

  6. Sassoon CS (2002) Ventilator-associated diaphragmatic dysfunction. Am J Respir Crit Care Med 166:1017–1018

    Article  PubMed  Google Scholar 

  7. Ward ME, Corbeil C, Gibbons W, Newman S, Macklem PT (1988) Optimization of respiratory muscle relaxation during mechanical ventilation. Anesthesiology 69:29–35

    PubMed  CAS  Google Scholar 

  8. Cinnella G, Conti G, Lofaso F, et al (1996) Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation. Am J Respir Crit Care Med 153:1025–1033

    PubMed  CAS  Google Scholar 

  9. Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477

    Article  PubMed  CAS  Google Scholar 

  10. Putensen C, Zech S, Wrigge H, et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49

    PubMed  CAS  Google Scholar 

  11. Imanaka H, Nishimura M, Takeuchi M, Kimball WR, Yahagi N, Kumon K (2000) Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med 28:402–407

    PubMed  CAS  Google Scholar 

  12. Prinianakis G, Kondili E, Georgopoulos D (2003) Effects of the flow waveform method of triggering and cycling on patient-ventilator interaction during pressure support. Intensive Care Med (in press)

    Google Scholar 

  13. Sassoon CS (1992) Mechanical ventilator design and function: the trigger variable. Respir Care 37:1056–1069

    PubMed  CAS  Google Scholar 

  14. Stell IM, Paul G, Lee KC, Ponte J, Moxham J (2001) Noninvasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med 164:2092–2097

    PubMed  CAS  Google Scholar 

  15. Aslanian P, El Atrous S, Isabey D, et al (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157:135–143

    PubMed  CAS  Google Scholar 

  16. Richard JC, Carlucci A, Breton L, et al (2002) Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 28:1049–1057

    Article  PubMed  Google Scholar 

  17. Brochard L (2002) Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation. Intensive Care Med 28:1552–1554

    PubMed  Google Scholar 

  18. Gottfried SB (1991) The role of PEEP in the mechanically ventilated COPD patient. In: Marini JJ, Roussos C (eds) Ventilatory Failure: Update in Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp:392–418

    Google Scholar 

  19. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65:1488–1499

    PubMed  CAS  Google Scholar 

  20. Mancebo J, Albaladejo P, Touchard D, et al (2000) Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology 93:81–90

    PubMed  CAS  Google Scholar 

  21. O’Donoghue FJ, Catcheside PG, Jordan AS, Bersten AD, McEvoy RD (2002) Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax 57:533–539

    PubMed  CAS  Google Scholar 

  22. Ninane V, Yernault JC, De Troyer A (1993) Intrinsic PEEP in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 148:1037–1042

    PubMed  CAS  Google Scholar 

  23. Ninane V, Rypens F, Yernault JC, De Troyer A (1992) Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 146:16–21

    PubMed  CAS  Google Scholar 

  24. Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151:562–569

    PubMed  CAS  Google Scholar 

  25. Ranieri MV, Giuliani R, Cinnella G, et al (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13

    PubMed  CAS  Google Scholar 

  26. Brochard L (2002) When ventilator and patient’s end of inspiration don’t coincide: what’s the matter? Am J Respir Crit Care Med 166:2–3

    Article  PubMed  Google Scholar 

  27. Younes M, Kun J, Webster K, Roberts D (2002) Response of ventilator-dependent patients to delayed opening of exhalation valve. Am J Respir Crit Care Med 166:21–30

    Article  PubMed  Google Scholar 

  28. Yamada Y, Du HL (2000) Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 88:2143–2150

    PubMed  CAS  Google Scholar 

  29. Hotchkiss JRJ, Adams AB, Stone MK, Dries DJ, Marini JJ, Crooke PS (2002) Oscillations and noise: inherent instability of pressure support ventilation? Am J Respir Crit Care Med 165:47–53

    PubMed  Google Scholar 

  30. Foti G, Cereda M, Banfi G, Pelosi P, Fumagalli R, Pesenti A (1997) End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 156:1210–1216

    PubMed  CAS  Google Scholar 

  31. Marini JJ, Rodriguez RM, Lamb V (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134:902–909

    PubMed  CAS  Google Scholar 

  32. Marini JJ, Smith TC, Lamb VT (1988) External work output and force generation during synchronized intermittent mechanical ventilation. Am Rev Respir Dis 138:1169–1179

    PubMed  CAS  Google Scholar 

  33. Sottiaux TM (2001) Patient-ventilator interactions during volume-support ventilation: asynchrony and tidal volume instability—a report of three cases. Respir Care 46:255–262

    PubMed  CAS  Google Scholar 

  34. Puddy A, Patrick W, Webster K, Younes M (1996) Respiratory control during volume-cycled ventilation in normal humans. J Appl Physiol 80:1749–1758

    PubMed  CAS  Google Scholar 

  35. Fernandez R, Mendez M, Younes M (1999) Effect of ventilator flow rate on respiratory timing in normal humans. Am J Respir Crit Care Med 159:710–719

    PubMed  CAS  Google Scholar 

  36. Laghi F, Karamchandani K, Tobin MJ (1999) Influence of ventilator settings in determining respiratory frequency during mechanical ventilation. Am J Respir Crit Care Med 160:1766–1770

    PubMed  CAS  Google Scholar 

  37. Rossi A, Appendini L (1995) Wasted efforts and dysynchrony: is the patient-ventilator battle back? Intensive Care Med 21:867–870

    PubMed  CAS  Google Scholar 

  38. Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21:547–553

    Article  PubMed  CAS  Google Scholar 

  39. Conti G, Cinnella G, Barboni E, Lemaire F, Harf A, Brochard L (1996) Estimation of occlusion pressure during assisted ventilation in patients with intrinsic PEEP. Am J Respir Crit Care Med 154:907–912

    PubMed  CAS  Google Scholar 

  40. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521

    PubMed  CAS  Google Scholar 

  41. Jubran A, Van de Graaff WB, Tobin MJ (1995) Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:129–136

    PubMed  CAS  Google Scholar 

  42. Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155:1940–1948

    PubMed  CAS  Google Scholar 

  43. Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L, and the SRLF collaborative group on mechanical ventilation (2001) Noninvasive versus conventional mechanical ventilation. An epidemiological survey. Am J Respir Crit Care Med 163:874–880

    PubMed  CAS  Google Scholar 

  44. Hill NS (2002) Saving face: better interfaces for noninvasive ventilation. Intensive Care Med 28:227–229

    PubMed  CAS  Google Scholar 

  45. Lellouche F, Maggiore SM, Deye N, et al (2002) Effect of the humidification device on the work of breathing during noninvasive ventilation. Intensive Care Med 28:1582–1589

    Article  PubMed  Google Scholar 

  46. Calderini E, Confalonieri M, Puccio PG, Francavilla N, Stella L, Gregoretti C (1999) Patientventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 25:662–667

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brochard, L. (2005). Role of the Clinician in Adjusting Ventilator Parameters During Assisted Ventilation. In: Slutsky, A.S., Brochard, L. (eds) Mechanical Ventilation. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26791-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-26791-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20267-7

  • Online ISBN: 978-3-540-26791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics