Skip to main content

Adjuncts to Mechanical Ventilation for ARDS Including Biological Variability

  • Conference paper
Mechanical Ventilation

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

  • 923 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dreyfuss D, Saumon G (1998) Ventilator induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  2. Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  3. ARDSnet (2000) Ventilation with lower tidal volumes compared with traditional tidal volume for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Google Scholar 

  4. Gattinoni L, Tognoni G, Pesenti A, et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

    Article  PubMed  CAS  Google Scholar 

  5. Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: A 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  6. Ravencraft SA (1996) Tracheal gas insufflation: Adjunct to conventional mechanical ventilation. Respir Care 41:105–111

    Google Scholar 

  7. Streseman E and Sattler FP (1969) Effects of washout of anatomical deadspace on ventilation, pH, and blood gas composition in anesthetized dogs. Respiration 26:116–121

    Google Scholar 

  8. Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ (1995) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Crit Care Med 152:489–495

    PubMed  CAS  Google Scholar 

  9. Kacmarek RM (2001) Complications of tracheal gas insufflation. Respir Care 46:167–176

    PubMed  CAS  Google Scholar 

  10. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on CO2 removal during tracheal gas insufflation in dogs. J Appl Physiol 75:1238–1246

    PubMed  CAS  Google Scholar 

  11. Imanaka H, Kirmse M, Mang H, Hess D, Kacmarek RM (1999) Expiratory phase tracheal gas insufflation and pressure control in sheep with permissive hypercapnia. Am J Respir Crit Care Med 159:49–54

    PubMed  CAS  Google Scholar 

  12. Imanaka H, Kacmarek RM, Riggi V, Ritz R, Hess D (1998) Expiratory phase and volume-adjusted tracheal gas insufflation: A lung model study. Crit Care Med 126:939–946

    Google Scholar 

  13. Burke WC, Nahum A, Ravenscraft SA, et al (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 148:562–568

    PubMed  CAS  Google Scholar 

  14. Kirmse M, Fujino Y, Hromi J, Mang H, Hess D, Kacmarek RM (1999) Pressure release tracheal gas insufflation reduces airway pressures in lung-injured sheep maintaining eucapnia. Am J Respir Crit Care 160:1462–1467

    CAS  Google Scholar 

  15. Gowski DT, Delgado E, Miro AM, Tasota FJ, Hoffman LA, Pinsky MR (1997) Tracheal gas insufflation during pressure-control ventilation: effect of using a pressure relief valve. Crit Care Med 25:145–152

    PubMed  CAS  Google Scholar 

  16. De Robertis E, Serville G, Jonson B, Tufano R (1999) Aspiration of deadspace allows normocapnic ventilation at low tidal volumes in man. Intensive Care Med 25:674–679

    PubMed  Google Scholar 

  17. Lethvall S, Sondergaard S, Karason S, Lundin S, Stenquist O (2002) Deadspace reduction and tracheal pressure measurement using a coaxial inner tube in an endotracheal tube. Intensive Care Med 28:1042–1048

    PubMed  CAS  Google Scholar 

  18. Takahashi T, Bugedo G, Adams AB, Bliss PL, Marini JJ (1999) Effects of tracheal gas insufflation and tracheal gas exsufflation on intrinsic positive end-expiratory pressure and carbon dioxide elimination. Respir Care 44:918–924

    Google Scholar 

  19. Ravenscraft SA, Burke WC, Nahum A, et al (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148:345–351

    PubMed  CAS  Google Scholar 

  20. Saura P, Lucangelo Blanch L, Artigas A, Mas A, Fernandez R (1996) Factores determinantres de la reduccion de la PaCO2 con la insuflacion de gas traqual en pacientes con lesion pulmonar aguda. Med Intensiva 20:246–251

    Google Scholar 

  21. Kalfon P, Rao GS, Gallart L, Puybasset L, Coriat P, Rouby JJ (1997) Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 87:6–17

    PubMed  CAS  Google Scholar 

  22. Richecoeur J, Lu Q, Vieira SRR, et al (1999) Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160:77–85

    PubMed  CAS  Google Scholar 

  23. Kylstra JA, Paganelli CV, Lanphier EH (1966) Pulmonary gas exchange in dogs ventilated with hyperbarically oxygenated liquid. J Appl Physiol 21:177–184

    PubMed  CAS  Google Scholar 

  24. Fuhrman BP, Paczan PR, DeFrancisis M (1991) Perfluorocarbon-associated gas exchange. Crit Care Med 19:712–722

    PubMed  CAS  Google Scholar 

  25. Tutuncu AS, Faithful NS, Lachmann B (1993) Intratracheal perfluorocarbon administration combined with mechanical ventilation in experimental respiratory distress syndrome dosedependent improvement of gas exchange. Crit Care Med 21:962–969

    Article  PubMed  CAS  Google Scholar 

  26. Hirschl RD, Tooley R, Parent AC, Johnson K, Barlett RH (1995) Improvement of gas exchange, pulmonary function, and lung injury with partial liquid ventilation: a study model in the setting of severe respiratory failure. Chest 108:500–508

    PubMed  CAS  Google Scholar 

  27. Arnold JH (2000) High-frequency oscillatory ventilation and partial liquid ventilation: Liquid breathing to a different beat (frequency). Crit Care Med 28:2660–2662

    PubMed  CAS  Google Scholar 

  28. Doctor A, Ibla JC, Grenier BM, et al (1998) Pulmonary blood flow distribution during partial liqid ventilation. J Appl Physiol 84:1540–1550

    PubMed  CAS  Google Scholar 

  29. Dickson EW, Heard SO, Chu B, Fraire A, Brueggemann AB, Doern GV (1998) Partial liquid ventilation with perfluorocarbon in the treatment of rats with lethal pneumococcal pneumonia. Anesthesiology 88:218–223

    PubMed  CAS  Google Scholar 

  30. Cox PN, Frndova H, Tan PSK, et al (1997) Concealed air leak associated with large tidal volumes in partial liquid ventilation. Am J Respir Crit Care Med 156:992–997

    PubMed  CAS  Google Scholar 

  31. Kirmse M, Fujino Y, Hess D, Kacmarek RM (1998) Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation. Am J Respir Crit Care Med 158:1550–1556

    PubMed  CAS  Google Scholar 

  32. Hirschl RB, Pranikoff T, Gauger P, Schreiner RJ, Dechert R, Bartlett RH (1995) Liquid ventilation in adults, children, and full-term neonates. Lancet 346:1201–1202

    Article  PubMed  CAS  Google Scholar 

  33. Hirschl RB, Pranikoff T, Wise C, et al (1996) Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA 275:383–389

    Article  PubMed  CAS  Google Scholar 

  34. Leach CL, Greenspan JS, Rubenstein SD, Shaffer TH, Wolfson MR, Jackson JC (1996) Partial liquid ventilation with Perflubron in premature infants with severe respiratory distress syndrome. N Engl J Med 335:761–7

    Article  PubMed  CAS  Google Scholar 

  35. Croce MA, Fabian TC, Patton JH, Melton SM, Moore M, Trenthem LL (1998) Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J Trauma 45:273–282

    PubMed  CAS  Google Scholar 

  36. Tsai WC, Lewis D, Nasr SZ, Hirschl RB (1998) Liquid ventilation in an infant with pulmonary alveolar proteinosis. Pediatr Pulmonol 26:283–286

    Article  PubMed  CAS  Google Scholar 

  37. Reickett CA, Pranikoff T, Overbeck MC, et al (2001) The pulmonary and systemic distribution and elimination of Perflubron from adult patients treated with partial liquid ventilation. Chest 119:515–522

    Google Scholar 

  38. Greenspan JS, Wolfson MR, Rubenstein D, Shaffer TH (1990) Liquid ventilation of human preterm neonates. J Pediatr 117:106–111

    PubMed  CAS  Google Scholar 

  39. Hirschl RB, Tooley R, Parent A, Johnson K, Bartlett RH (1995) Partial liquid ventilation improves gas exchange in the setting of respiratory failure during extracorporeal life support. Chest 108:500–508

    PubMed  CAS  Google Scholar 

  40. Hirschl RB, Croce M, Gore D, et al (2002) Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med 165:781–787

    PubMed  Google Scholar 

  41. Baden HP, Mellema JD, Bratton SL, O’Rourke PO, Jackson JC (1997) High-frequency oscillatory ventilation with partial liquid ventilation in a model of acute respiratory failure. Crit Care Med 25:299–302

    PubMed  CAS  Google Scholar 

  42. Sukumar M, Bommaraju M, Fisher JE, Morin FC, Papo MC, Fuhrman BP (1998) High-frequency partial liquid ventilation in respiratory distress syndrome hemodynamics and gas exchange. J Appl Physiol 84:327–334

    PubMed  CAS  Google Scholar 

  43. Doctor A, Mazzoni MC, DelBalzo U, DiCanzio J, Arnold JH (1999) High-frequency oscillatory ventilation of the perfluorocarbon-filled lung: Preliminary results in an animal model acute lung injury. Crit Care Med 27:2500–2507

    PubMed  CAS  Google Scholar 

  44. Hurford WE (1997) The biologic basis for inhaled nitric oxide. Respir Care Clin N Am 3:357–369

    PubMed  CAS  Google Scholar 

  45. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399

    Article  PubMed  CAS  Google Scholar 

  46. Dellinger RP, Zimmerman JL, Taylor RW, et al (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: Results of a randomized phase II trial. Crit Care Med 26:15–23

    PubMed  CAS  Google Scholar 

  47. Michael JR, Barton RG, Saffle JR, et al (1998) Inhaled nitric oxide versus conventional therapy. Effect on oxygenation in ARDS. Am J Respir Crit Care Med 157:1372–1380

    PubMed  CAS  Google Scholar 

  48. Troncy E, Collet JP, Shapiro S, et al (1998) Inhaled nitric oxide in acute respiratory distress syndrome. Am J Respir Crit Care Med 157:1483–1488

    PubMed  CAS  Google Scholar 

  49. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. Intensive Care Med 25:911–919

    Article  PubMed  CAS  Google Scholar 

  50. Kacmarek RM (2001) Combination therapy. Respir Care Clin N Am 7:663–681

    PubMed  CAS  Google Scholar 

  51. Goldberger AL (2001) Heartbeats, hormones, and health. Is variability the spice of life? Am J Respir Crit Care Med 163:1289–1296

    PubMed  CAS  Google Scholar 

  52. Cannon WB (1927) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Google Scholar 

  53. Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  PubMed  CAS  Google Scholar 

  54. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314

    Article  PubMed  CAS  Google Scholar 

  55. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov P, Pend CK, Stanely HE (2002) Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad Sci USA 99:2466–2472

    Article  PubMed  Google Scholar 

  56. Suki B, Barabasl AL, Hantos Z, Petak F, Stanley HE (1994) Avalanches and power-law behaviour in lung inflation. Nature 368:615–618

    Article  PubMed  CAS  Google Scholar 

  57. Suki B, Alencar AM, Sujeer MK, et al (1998) Life support systems benefit from noise. Nature 393: 127–128

    Article  PubMed  CAS  Google Scholar 

  58. Lefevre, GR, Kowalski SE, Girling LG, Thiessen DB, Mutch AC (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154:1567–1572

    PubMed  CAS  Google Scholar 

  59. Nam AJ, Brower RG, Fessler HE, Simon BA (2000) Biologic variability inmechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 161:1797–1804

    PubMed  CAS  Google Scholar 

  60. Mutch WAC, Harms S, Graham MR, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162:319–323

    PubMed  CAS  Google Scholar 

  61. Boker A, Graham MR, Walley KR, et al (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165:456–462

    PubMed  Google Scholar 

  62. Mutch WAC, Eschun GM, Kowalski SE, Graham MR, Girling LG, Lefevre GR (2000) Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. Br J Anesth 84:197–203

    CAS  Google Scholar 

  63. Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165:366–371

    PubMed  Google Scholar 

  64. Rimoldi OS, Pierini A, Ferrari S, Cerutti M, Pagani M, Malliani A (1990) Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol 258:H967–H976

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kacmarek, R.M. (2005). Adjuncts to Mechanical Ventilation for ARDS Including Biological Variability. In: Slutsky, A.S., Brochard, L. (eds) Mechanical Ventilation. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26791-3_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-26791-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20267-7

  • Online ISBN: 978-3-540-26791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics