Adjuncts to Mechanical Ventilation for ARDS Including Biological Variability

  • R. M. Kacmarek
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Acute Respiratory Distress Syndrome Respir Crit Ventilator Induce Lung Injury Airway Pressure Release Ventilation Partial Liquid Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dreyfuss D, Saumon G (1998) Ventilator induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  2. 2.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  3. 3.
    ARDSnet (2000) Ventilation with lower tidal volumes compared with traditional tidal volume for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  4. 4.
    Gattinoni L, Tognoni G, Pesenti A, et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573CrossRefPubMedGoogle Scholar
  5. 5.
    Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: A 28-day international study. JAMA 287:345–355CrossRefPubMedGoogle Scholar
  6. 6.
    Ravencraft SA (1996) Tracheal gas insufflation: Adjunct to conventional mechanical ventilation. Respir Care 41:105–111Google Scholar
  7. 7.
    Streseman E and Sattler FP (1969) Effects of washout of anatomical deadspace on ventilation, pH, and blood gas composition in anesthetized dogs. Respiration 26:116–121Google Scholar
  8. 8.
    Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ (1995) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Crit Care Med 152:489–495PubMedGoogle Scholar
  9. 9.
    Kacmarek RM (2001) Complications of tracheal gas insufflation. Respir Care 46:167–176PubMedGoogle Scholar
  10. 10.
    Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on CO2 removal during tracheal gas insufflation in dogs. J Appl Physiol 75:1238–1246PubMedGoogle Scholar
  11. 11.
    Imanaka H, Kirmse M, Mang H, Hess D, Kacmarek RM (1999) Expiratory phase tracheal gas insufflation and pressure control in sheep with permissive hypercapnia. Am J Respir Crit Care Med 159:49–54PubMedGoogle Scholar
  12. 12.
    Imanaka H, Kacmarek RM, Riggi V, Ritz R, Hess D (1998) Expiratory phase and volume-adjusted tracheal gas insufflation: A lung model study. Crit Care Med 126:939–946Google Scholar
  13. 13.
    Burke WC, Nahum A, Ravenscraft SA, et al (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 148:562–568PubMedGoogle Scholar
  14. 14.
    Kirmse M, Fujino Y, Hromi J, Mang H, Hess D, Kacmarek RM (1999) Pressure release tracheal gas insufflation reduces airway pressures in lung-injured sheep maintaining eucapnia. Am J Respir Crit Care 160:1462–1467Google Scholar
  15. 15.
    Gowski DT, Delgado E, Miro AM, Tasota FJ, Hoffman LA, Pinsky MR (1997) Tracheal gas insufflation during pressure-control ventilation: effect of using a pressure relief valve. Crit Care Med 25:145–152PubMedGoogle Scholar
  16. 16.
    De Robertis E, Serville G, Jonson B, Tufano R (1999) Aspiration of deadspace allows normocapnic ventilation at low tidal volumes in man. Intensive Care Med 25:674–679PubMedGoogle Scholar
  17. 17.
    Lethvall S, Sondergaard S, Karason S, Lundin S, Stenquist O (2002) Deadspace reduction and tracheal pressure measurement using a coaxial inner tube in an endotracheal tube. Intensive Care Med 28:1042–1048PubMedGoogle Scholar
  18. 18.
    Takahashi T, Bugedo G, Adams AB, Bliss PL, Marini JJ (1999) Effects of tracheal gas insufflation and tracheal gas exsufflation on intrinsic positive end-expiratory pressure and carbon dioxide elimination. Respir Care 44:918–924Google Scholar
  19. 19.
    Ravenscraft SA, Burke WC, Nahum A, et al (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148:345–351PubMedGoogle Scholar
  20. 20.
    Saura P, Lucangelo Blanch L, Artigas A, Mas A, Fernandez R (1996) Factores determinantres de la reduccion de la PaCO2 con la insuflacion de gas traqual en pacientes con lesion pulmonar aguda. Med Intensiva 20:246–251Google Scholar
  21. 21.
    Kalfon P, Rao GS, Gallart L, Puybasset L, Coriat P, Rouby JJ (1997) Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 87:6–17PubMedGoogle Scholar
  22. 22.
    Richecoeur J, Lu Q, Vieira SRR, et al (1999) Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160:77–85PubMedGoogle Scholar
  23. 23.
    Kylstra JA, Paganelli CV, Lanphier EH (1966) Pulmonary gas exchange in dogs ventilated with hyperbarically oxygenated liquid. J Appl Physiol 21:177–184PubMedGoogle Scholar
  24. 24.
    Fuhrman BP, Paczan PR, DeFrancisis M (1991) Perfluorocarbon-associated gas exchange. Crit Care Med 19:712–722PubMedGoogle Scholar
  25. 25.
    Tutuncu AS, Faithful NS, Lachmann B (1993) Intratracheal perfluorocarbon administration combined with mechanical ventilation in experimental respiratory distress syndrome dosedependent improvement of gas exchange. Crit Care Med 21:962–969PubMedCrossRefGoogle Scholar
  26. 26.
    Hirschl RD, Tooley R, Parent AC, Johnson K, Barlett RH (1995) Improvement of gas exchange, pulmonary function, and lung injury with partial liquid ventilation: a study model in the setting of severe respiratory failure. Chest 108:500–508PubMedGoogle Scholar
  27. 27.
    Arnold JH (2000) High-frequency oscillatory ventilation and partial liquid ventilation: Liquid breathing to a different beat (frequency). Crit Care Med 28:2660–2662PubMedGoogle Scholar
  28. 28.
    Doctor A, Ibla JC, Grenier BM, et al (1998) Pulmonary blood flow distribution during partial liqid ventilation. J Appl Physiol 84:1540–1550PubMedGoogle Scholar
  29. 29.
    Dickson EW, Heard SO, Chu B, Fraire A, Brueggemann AB, Doern GV (1998) Partial liquid ventilation with perfluorocarbon in the treatment of rats with lethal pneumococcal pneumonia. Anesthesiology 88:218–223PubMedGoogle Scholar
  30. 30.
    Cox PN, Frndova H, Tan PSK, et al (1997) Concealed air leak associated with large tidal volumes in partial liquid ventilation. Am J Respir Crit Care Med 156:992–997PubMedGoogle Scholar
  31. 31.
    Kirmse M, Fujino Y, Hess D, Kacmarek RM (1998) Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation. Am J Respir Crit Care Med 158:1550–1556PubMedGoogle Scholar
  32. 32.
    Hirschl RB, Pranikoff T, Gauger P, Schreiner RJ, Dechert R, Bartlett RH (1995) Liquid ventilation in adults, children, and full-term neonates. Lancet 346:1201–1202CrossRefPubMedGoogle Scholar
  33. 33.
    Hirschl RB, Pranikoff T, Wise C, et al (1996) Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA 275:383–389CrossRefPubMedGoogle Scholar
  34. 34.
    Leach CL, Greenspan JS, Rubenstein SD, Shaffer TH, Wolfson MR, Jackson JC (1996) Partial liquid ventilation with Perflubron in premature infants with severe respiratory distress syndrome. N Engl J Med 335:761–7CrossRefPubMedGoogle Scholar
  35. 35.
    Croce MA, Fabian TC, Patton JH, Melton SM, Moore M, Trenthem LL (1998) Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J Trauma 45:273–282PubMedGoogle Scholar
  36. 36.
    Tsai WC, Lewis D, Nasr SZ, Hirschl RB (1998) Liquid ventilation in an infant with pulmonary alveolar proteinosis. Pediatr Pulmonol 26:283–286CrossRefPubMedGoogle Scholar
  37. 37.
    Reickett CA, Pranikoff T, Overbeck MC, et al (2001) The pulmonary and systemic distribution and elimination of Perflubron from adult patients treated with partial liquid ventilation. Chest 119:515–522Google Scholar
  38. 38.
    Greenspan JS, Wolfson MR, Rubenstein D, Shaffer TH (1990) Liquid ventilation of human preterm neonates. J Pediatr 117:106–111PubMedGoogle Scholar
  39. 39.
    Hirschl RB, Tooley R, Parent A, Johnson K, Bartlett RH (1995) Partial liquid ventilation improves gas exchange in the setting of respiratory failure during extracorporeal life support. Chest 108:500–508PubMedGoogle Scholar
  40. 40.
    Hirschl RB, Croce M, Gore D, et al (2002) Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med 165:781–787PubMedGoogle Scholar
  41. 41.
    Baden HP, Mellema JD, Bratton SL, O’Rourke PO, Jackson JC (1997) High-frequency oscillatory ventilation with partial liquid ventilation in a model of acute respiratory failure. Crit Care Med 25:299–302PubMedGoogle Scholar
  42. 42.
    Sukumar M, Bommaraju M, Fisher JE, Morin FC, Papo MC, Fuhrman BP (1998) High-frequency partial liquid ventilation in respiratory distress syndrome hemodynamics and gas exchange. J Appl Physiol 84:327–334PubMedGoogle Scholar
  43. 43.
    Doctor A, Mazzoni MC, DelBalzo U, DiCanzio J, Arnold JH (1999) High-frequency oscillatory ventilation of the perfluorocarbon-filled lung: Preliminary results in an animal model acute lung injury. Crit Care Med 27:2500–2507PubMedGoogle Scholar
  44. 44.
    Hurford WE (1997) The biologic basis for inhaled nitric oxide. Respir Care Clin N Am 3:357–369PubMedGoogle Scholar
  45. 45.
    Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399CrossRefPubMedGoogle Scholar
  46. 46.
    Dellinger RP, Zimmerman JL, Taylor RW, et al (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: Results of a randomized phase II trial. Crit Care Med 26:15–23PubMedGoogle Scholar
  47. 47.
    Michael JR, Barton RG, Saffle JR, et al (1998) Inhaled nitric oxide versus conventional therapy. Effect on oxygenation in ARDS. Am J Respir Crit Care Med 157:1372–1380PubMedGoogle Scholar
  48. 48.
    Troncy E, Collet JP, Shapiro S, et al (1998) Inhaled nitric oxide in acute respiratory distress syndrome. Am J Respir Crit Care Med 157:1483–1488PubMedGoogle Scholar
  49. 49.
    Lundin S, Mang H, Smithies M, Stenqvist O, Frostell (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. Intensive Care Med 25:911–919CrossRefPubMedGoogle Scholar
  50. 50.
    Kacmarek RM (2001) Combination therapy. Respir Care Clin N Am 7:663–681PubMedGoogle Scholar
  51. 51.
    Goldberger AL (2001) Heartbeats, hormones, and health. Is variability the spice of life? Am J Respir Crit Care Med 163:1289–1296PubMedGoogle Scholar
  52. 52.
    Cannon WB (1927) Organization for physiological homeostasis. Physiol Rev 9:399–431Google Scholar
  53. 53.
    Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262CrossRefPubMedGoogle Scholar
  54. 54.
    Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314CrossRefPubMedGoogle Scholar
  55. 55.
    Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov P, Pend CK, Stanely HE (2002) Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad Sci USA 99:2466–2472CrossRefPubMedGoogle Scholar
  56. 56.
    Suki B, Barabasl AL, Hantos Z, Petak F, Stanley HE (1994) Avalanches and power-law behaviour in lung inflation. Nature 368:615–618CrossRefPubMedGoogle Scholar
  57. 57.
    Suki B, Alencar AM, Sujeer MK, et al (1998) Life support systems benefit from noise. Nature 393: 127–128CrossRefPubMedGoogle Scholar
  58. 58.
    Lefevre, GR, Kowalski SE, Girling LG, Thiessen DB, Mutch AC (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154:1567–1572PubMedGoogle Scholar
  59. 59.
    Nam AJ, Brower RG, Fessler HE, Simon BA (2000) Biologic variability inmechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 161:1797–1804PubMedGoogle Scholar
  60. 60.
    Mutch WAC, Harms S, Graham MR, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162:319–323PubMedGoogle Scholar
  61. 61.
    Boker A, Graham MR, Walley KR, et al (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165:456–462PubMedGoogle Scholar
  62. 62.
    Mutch WAC, Eschun GM, Kowalski SE, Graham MR, Girling LG, Lefevre GR (2000) Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. Br J Anesth 84:197–203Google Scholar
  63. 63.
    Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165:366–371PubMedGoogle Scholar
  64. 64.
    Rimoldi OS, Pierini A, Ferrari S, Cerutti M, Pagani M, Malliani A (1990) Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol 258:H967–H976PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R. M. Kacmarek

There are no affiliations available

Personalised recommendations