Recruitment Maneuvers in ARDS

  • V. N. Okamoto
  • J. B. Borges
  • M. B. P. Amato
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Acute Lung Injury Acute Respiratory Distress Syndrome Electrical Impedance Tomography Respir Crit Recruitment Maneuver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  2. 2.
    ARDSNet (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  3. 3.
    Dries DJ, Marini JJ (2002) Optimized positive end-expiratory pressure-an elusive target. Crit Care Med 30:1159–1160PubMedGoogle Scholar
  4. 4.
    Damgaard-Pedersen K, Qvist T (1980) Pediatric pulmonary CT-scanning. Anaesthesia-induced changes. Pediatr Radiol 9:145–148PubMedGoogle Scholar
  5. 5.
    Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokics L (1985) Pulmonary densities during anesthesia with muscular relaxation—a proposal of atelectasis. Anesthesiology 62:422–428PubMedGoogle Scholar
  6. 6.
    Hedenstierna G, Lundquist H, Lundh B, et al (1989) Pulmonary densities during anaesthesia. An experimental study on lung morphology and gas exchange. Eur Respir J 2:528–535PubMedGoogle Scholar
  7. 7.
    Nyman G, Funkquist B, Kvart C, et al (1990) Atelectasis causes gas exchange impairment in the anaesthetised horse. Equine Vet J 22:317–324PubMedCrossRefGoogle Scholar
  8. 8.
    Gattinoni L, Mascheroni D, Torresin A, et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142CrossRefPubMedGoogle Scholar
  9. 9.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedGoogle Scholar
  10. 10.
    Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269:2122–2127CrossRefPubMedGoogle Scholar
  11. 11.
    Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13PubMedGoogle Scholar
  12. 12.
    Glaister DH (2001) Effects of aceleration on the lung. In: Prisk GK, West JB (eds) Gravity and the Lung: Lessons from Microgravity, 1st edn. Marcel Dekker Inc., New York, pp 39–74Google Scholar
  13. 13.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711PubMedGoogle Scholar
  14. 14.
    Tsubo T, Sakai I, Suzuki A, Okawa H, Ishihara H, Matsuki A (2001) Density detection in dependent left lung region using transesophageal echocardiography. Anesthesiology 94:793–798PubMedGoogle Scholar
  15. 15.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedGoogle Scholar
  16. 16.
    Katz JA, Ozanne GM, Zinn SE, Fairley HB(1981) Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54:9–16PubMedGoogle Scholar
  17. 17.
    Dambrosio M, Roupie E, Mollet JJ, et al (1997) Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87:495–503PubMedGoogle Scholar
  18. 18.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  19. 19.
    Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653CrossRefPubMedGoogle Scholar
  20. 20.
    Martynowicz MA, Minor TA, Wilson TA, Walters BJ, Hubmayr RD (1999) Effect of positive end-expiratory pressure on regional lung expansion of oleic acid-injured dogs. Chest 116:28S–29SCrossRefPubMedGoogle Scholar
  21. 21.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  22. 22.
    Bilek AM, Dee KC, Gaver DP 3rd (2003) Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–783PubMedGoogle Scholar
  23. 23.
    Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMedGoogle Scholar
  24. 24.
    Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–21CrossRefPubMedGoogle Scholar
  25. 25.
    Kunst PW, Bohm SH, Vazquez de Anda G, et al (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183PubMedGoogle Scholar
  26. 26.
    Carney DE, Bredenberg CE, Schiller HJ, et al (1999) The mechanism of lung volume change during mechanical ventilation. Am J Respir Crit Care Med 160:1697–1702Google Scholar
  27. 27.
    Schiller HJ, McCann UG 2nd, Carney DE, Gatto LA, Steinberg JM, Nieman GF (2001) Altered alveolar mechanics in the acutely injured lung. Crit Care Med 29:1049–1055PubMedGoogle Scholar
  28. 28.
    Baumgardner JE, Markstaller K, Pfeiffer B, Doebrich M, Otto CM (2002) Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am J Respir Crit Care Med 166:1556–1562CrossRefPubMedGoogle Scholar
  29. 29.
    Lu Q, Malbouisson LM, Mourgeon E, Goldstein I, Coriat P, Rouby JJ (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510PubMedGoogle Scholar
  30. 30.
    Borges JB, Caramez MPR, Gaudêncio AMAS, et al (2000) Looking for the best PEEP: spiral CT analysis, mechanical and physiological parameters (abstract). Am J Respir Crit Care Med 161:A48 (abst)Google Scholar
  31. 31.
    Borges JB, Caramez MPR, Gaudêncio AMAS, et al (2000) Lung recruitment at airway pressures beyond 40 cmH2O: physiology, mechanics and spiral CT analysis (abstract). Am J Respir Crit Care Med 161:A48 (abst)Google Scholar
  32. 32.
    Borges JB, Janot GF, Okamoto VN, et al (2003) Is there a true cephalocaudal lung gradient in ARDS? Am J Respir Crit Care Med 167 (abst)Google Scholar
  33. 33.
    Neumann P, Berglund JE, Mondejar EF, Magnusson A, Hedenstierna G (1998) Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic-acid-induced lung injury. Am J Respir Crit Care Med 158:1636–1643.PubMedGoogle Scholar
  34. 34.
    Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362PubMedGoogle Scholar
  35. 35.
    D’Angelo E, Pecchiari M, Baraggia P, Saetta M, Balestro E, Milic-Emili J (2002) Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 92:949–956PubMedGoogle Scholar
  36. 36.
    McCann UG 2nd, Schiller HJ, Carney DE, Gatto LA, Steinberg JM, Nieman GF (2001) Visual validation of the mechanical stabilizing effects of positive end-expiratory pressure at the alveolar level. J Surg Res 99:335–342CrossRefPubMedGoogle Scholar
  37. 37.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  38. 38.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  39. 39.
    Muscedere JG, Mullen JBM, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  40. 40.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  41. 41.
    Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilatorinduced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180PubMedGoogle Scholar
  42. 42.
    Takeuchi M, Goddon S, Dolhnikoff M, et al (2002) Set positive end-expiratory pressure during protective ventilation affects lung injury. Anesthesiology 97:682–692CrossRefPubMedGoogle Scholar
  43. 43.
    Hamilton PP, Onayemi A, Smyth JA, et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55:131–138PubMedGoogle Scholar
  44. 44.
    McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192PubMedGoogle Scholar
  45. 45.
    Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755CrossRefPubMedGoogle Scholar
  46. 46.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361CrossRefPubMedGoogle Scholar
  47. 47.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trial Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  48. 48.
    Brower RG, Shanholtz CB, Fessler HE, et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27:1492–1498PubMedGoogle Scholar
  49. 49.
    Hickling KG (2002) Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 8:32–38PubMedGoogle Scholar
  50. 50.
    Marini JJ, Amato MB (2000) Lung recruitment during ARDS. Minerva Anestesiol 66:314–319PubMedGoogle Scholar
  51. 51.
    Gattinoni L, Tognoni G, Pesenti A, et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573CrossRefPubMedGoogle Scholar
  52. 52.
    Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT (2002) High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birthweight infants. N Engl J Med 347:643–652CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson AH, Peacock JL, Greenough A, et al (2002) High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med 347:633–642CrossRefPubMedGoogle Scholar
  54. 54.
    Stark AR (2002) High-frequency oscillatory ventilation to prevent bronchopulmonary dysplasia— are we there yet? N Engl J Med 347:682–684CrossRefPubMedGoogle Scholar
  55. 55.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321CrossRefPubMedGoogle Scholar
  56. 56.
    Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78PubMedGoogle Scholar
  57. 57.
    Grasso S, Mascia L, Del Turco M, et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802CrossRefPubMedGoogle Scholar
  58. 58.
    Villagra A, Ochagavia A, Vatua S, et al (2002) Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 165:165–170PubMedGoogle Scholar
  59. 59.
    Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky AS (1999) Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med 25:1297–301PubMedGoogle Scholar
  60. 60.
    Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedGoogle Scholar
  61. 61.
    Patroniti N, Foti G, Cortinovis B, et al (2002) Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 96:788–794CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • V. N. Okamoto
  • J. B. Borges
  • M. B. P. Amato

There are no affiliations available

Personalised recommendations