How to Detect VILI at the Bedside

  • P. P. Terragni
  • B. Chiaia
  • V. M. Ranieri
Conference paper
Part of the Update in Intensive Care Medicine book series (UICMSOFT)


Acute Respiratory Distress Syndrome Respir Crit Stress Index Acute Respiratory Distress Syndrome Patient Ventilatory Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macklin MT, Macklin CC (1944) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory disease and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine 23:281–352Google Scholar
  2. 2.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  3. 3.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  4. 4.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  5. 5.
    Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15SCrossRefPubMedGoogle Scholar
  6. 6.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  7. 7.
    Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Ass Am Physicians 110:482–488Google Scholar
  8. 8.
    Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61CrossRefPubMedGoogle Scholar
  9. 9.
    American Thoracic Society International Consensus Conference (1999) Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160:2118–2124Google Scholar
  10. 10.
    Slutsky AS (1993) Mechanical ventilation. Chest 10:1833–1859Google Scholar
  11. 11.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedGoogle Scholar
  12. 12.
    Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  13. 13.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  14. 14.
    Martin-Lefreve L, Roupie E, Dreyfuss D, Saumon G (1998) Can respiratory system pressurevolume (PV) curve analysis predict the occurrence of volutrauma? Am J Respir Crit Care Med 157:A693 (abst)Google Scholar
  15. 15.
    Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med 149:19–27PubMedGoogle Scholar
  16. 16.
    Ranieri VM, Eissa NT, Corbeil C, et al (1991) Positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144:544–551PubMedGoogle Scholar
  17. 17.
    Brochard L (1997) Respiratory pressure-volume curves. In: Tobin MJ (ed) Principles and Practice of Intensive Care Monitoring. McGraw-Hill, New York, pp:597–616Google Scholar
  18. 18.
    Tobin MJ (2001) Advances in mechanical ventilation. N Engl J Med 344:1986–1996CrossRefPubMedGoogle Scholar
  19. 19.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMedGoogle Scholar
  20. 20.
    Broccard AF, Hotchkiss JR, Kuwayama N, et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157:1935–1942PubMedGoogle Scholar
  21. 21.
    Chiumello D, Goesev P, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  22. 22.
    Liu JM, De Roberstis E, Blomquist S, Dahm PL, Svantensson C, Jonson B (1999) Elastic pressure-volume curves of the respiratory system reveal a high tendency to lung collapse in young pigs. Intensive Care Med 25:1140–1146CrossRefPubMedGoogle Scholar
  23. 23.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  24. 24.
    Servillo G, Svantesson C, Beydon L, et al (1997) Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636PubMedGoogle Scholar
  25. 25.
    Jonson B, Svantesson C (1999) Elastic pressure-volume curves: what information do they convey? Thorax 54:82–87PubMedCrossRefGoogle Scholar
  26. 26.
    Vieira SR, Puybasset L, Lu Q, et al (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159:1612–1623PubMedGoogle Scholar
  27. 27.
    Lu Q, Vieira SR, Richecoeur J, et al (1999) A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 159:275–282PubMedGoogle Scholar
  28. 28.
    Vieira SR, Puybasset L, Richecoeur J, et al (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158:1571–1577PubMedGoogle Scholar
  29. 29.
    Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ (1998) A computed tomography scan assessment of regional lung volume in acute lung injury. The CTS can ARDS Study Group. Am J Respir Crit Care Med 158:1644–1655PubMedGoogle Scholar
  30. 30.
    Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMedGoogle Scholar
  31. 31.
    Fung YC (1988) A model of lung structure and its validation. J Appl Physiol 64:2132–2142PubMedGoogle Scholar
  32. 32.
    Kimmel E, Budiansky B (1990) Surface tension and the dodecahedron model for lung elasticity. J Biomech Eng 112:160–167PubMedGoogle Scholar
  33. 33.
    Denny E, Schroter RC (1995) The mechanical behavior of a mammalian lung alveolar duct model. J Biomech Eng 117:254–261PubMedGoogle Scholar
  34. 34.
    Weibel ER (1963) Morphometry of the Human Lung. Springer-Verlag, BerlinGoogle Scholar
  35. 35.
    Gefen A, Elad D, Shiner RJ (1999) Analysis of stress distribuition in the alveolar septa of normal and simulated emphysematic lungs. J Biomech 32:891–897CrossRefPubMedGoogle Scholar
  36. 36.
    Mead J, Takishima T, Leith D (1970) Stress distribuition in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  37. 37.
    Timoshenko S (1934) Theory of Elasticity. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Ranieri VM, Slutsky AS (1999) Respiratory physiology and acute lung injury: the miracle of Lazarus. Intensive Care Med 25:1040–1043CrossRefPubMedGoogle Scholar
  40. 40.
    Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs Am J Respir Crit Care Med 163:69–78PubMedGoogle Scholar
  41. 41.
    Crotti S, Mascheroni D, Caironi P, et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140PubMedGoogle Scholar
  42. 42.
    Pelosi P, Goldner M, McKibben A, et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  43. 43.
    Ranieri, VM, Zhang H, Mascia L, et al (2000) Pressuretime curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328PubMedGoogle Scholar
  44. 44.
    Ranieri VM, Brienza N, Santostasi S, et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:10821091Google Scholar
  45. 45.
    Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:18401848Google Scholar
  46. 46.
    D’Angelo E, Robatto FM, Calderini E, et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:26022610Google Scholar
  47. 47.
    Eissa NT, Ranieri VM, Chasse M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of the behaviour of the respiratory system in ARDS patients: Effects of flow, volume and time. J Appl Physiol 70:27192729Google Scholar
  48. 48.
    Jonson B, Beydon L, Brauer K, Mansson C, Valind S, Grytzell H (1993) Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties. J Appl Physiol 75:132140Google Scholar
  49. 49.
    De Perrot M, Imai Y, Volgyesi GA, et al (2002) Effect of ventilator-induced lung injury on the development of reperfusion injury in a rat lung transplant model. J Thorac Cardiovasc Surg 124:1137–1144PubMedGoogle Scholar
  50. 50.
    Nakane M, Imai Y, Kajikawa O, et al (2002) Stress indexstrategy: Analysis of dynamic airway opening pressure-time curve may be a useful tool to protect rabbits from VILI. Am J Respir Crit Care Med 165:A680 (abst)Google Scholar
  51. 51.
    Grasso S, Terragni P, Mascia L, et al (2002) Dynamic airway pressure/time curve (stress index) in experimental ARDS. Intensive Care Med 28:A727 (abst)Google Scholar
  52. 52.
    Grasso S, Mascia L, Trotta T, et al (2000) Dynamic airway pressure/time curve analysis to realize lung protective ventilatory strategy in ARDS patients. Intensive Care Med 26:A449 (abst)Google Scholar
  53. 53.
    Grasso S, Mascia L, Capobianco S, et al (2000) Protective ventilatory strategy: “NIH” vs “Static P–V curves” vs “Stress Index” protocol. Intensive Care Med 26:A619 (abst)Google Scholar
  54. 54.
    Neve V, de la Roque ED, Leclerc F, et al (2000) Ventilator-induced overdistension in children: dynamic versus low-flow inflation volume-pressure curves. Am J Respir Crit Care Med 162:139–147PubMedGoogle Scholar
  55. 55.
    Gama de Abreu M, Heintz M, Heller A, Szechenyi R, Albrecht DM, Koch T (2003) One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg 96:220–228Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. P. Terragni
  • B. Chiaia
  • V. M. Ranieri

There are no affiliations available

Personalised recommendations